中国散裂中子源实验的简图如图1所示,其原理是把中子束打在被测样品(例如新药品或机翼材料)上,探测被反射的中子位置就能计算出样品的内部结构图像,其特点如下: A/D采集通道多,每个通道的数据带宽高,且需要把现场采集的数据传到远程服务器上。因此,要求数据传输模块既要成本低、微型化、具备网络功能,也要数据带宽高。
单片机或ARM具有微型化、低成本的特点,但数据带宽和灵活性不满足本项目;工控计算机数据处理能力强,有网络接口,但是体积过大,成本高;传统高能物理实验采用的VME系统也因体积大、数据带宽有限而不适合用在中国散裂中子源实验上。
FPGA有很高的性能,而且内部还集成PowerPC处理器、千兆网MAC等硬核资源,这使得在一块FPGA上就能构建一个完整的片上系统,使整个系统体积可以做的很小。在FPGA片内PowerPC硬核上移植嵌入式linux操作系统,用软件来实现网络传输协议可以解决用FPGA硬件描述语言实现TCP/IP协议难度大的问题。FPGA的高性能、高可靠性和Linux的灵活性完美结合在一个片内,能较好地满足本项目的需求。
1 系统的总体构成及层次
本系统可以分为5个层次,如图2所示,
最低层为外围电路硬件层,每一层都是建立在其下一层之上。
2 系统外围电路的简介
本文在硬件上采用了实验室自行设计的电路板,用的是带PowerPC的xilinx Virtex4 FPGA,电路如图3所示。
图3 系统的硬件模块框图
3 SOPC的构建
SOPC (System on a Programmable Chip) 即可编程片上系统,把整个系统放到一块硅片上,是一种特殊的嵌入式系统,具有灵活的设计方式,可裁减、可扩充、可升级,并具备软硬件在系统可编程的功能。
3.1 开发工具
Xilinx 公司提供了FPGA开发工具EDK(Embedded Development Kit),它带有大量可配置可定制的IP核,可以大大提高设计的效率,使设计者把主要精力放在设计系统架构上,能很方便的对FPGA进行模块化的重构和裁剪,提高设计的灵活性,减少了外围器件,符合SOPC的思想。
3.2 SOPC的总体构成
SOPC系统构建完成后的框图如图4所示,其中PowerPC405是已经固化在FPGA内部的硬核,工作频率设为300MHz,配置时要选择cache选项,否则运行嵌入式Linux会很慢。PowerPC405通过PLB(Process Local Bus)总线核和各个IP模块互联构建了一个完整的SOPC系统。
图4 FPGA内部各个IP模块框图
3.3 内存端口的设置
MPMC (Multi-Port Memory Controller)是DDR2内存控制器的IP核,它最多可以接八个数据端口,这样的好处是多个设备都可以通过各自的端口共享内存,本论文使用了四个端口:port0和port1都通过plb总线连接在PowerPC上,分别用于传输指令和数据,port2端口采用的是NPI(Native Port Interface)接口,用于接收A/D模块传输过来的用户数据,port3采用SDMA (Soft Direct Memory Access)接口,通过locallink总线和千兆网IP核相连。在对MPMC配置时要根据内存的型号、大小等实际参数来设置。
3.4 用户自定义数据接口IP核
开发工具虽然提供了一些常用的IP核,但是对于一些特定要求的逻辑,需要用户自己开发。由于从A/D采集板传送过来的数据速度很大,所以本论文在MPMC 的port2上采用NPI接口把A/D模块传过来的数据直接送入DDR2中。需要用硬件描述语言编写基于NPI接口的逻辑,并且还要编写基于PLB总线的IP核来实现对数据传输的控制,例如数据传输开始与停止、握手方式、数据包的大小等等。
3.5 千兆三态以太网硬核的配置
三态以太网TEMAC (Tri-Mode Ethernet Media Access Controller)是嵌在FPGA内部的硬核。本论文通过LocalLink总线使其连在内存控制器MPMC上,采用SDMA方式,使得数据直接从内存到网络接口而不必经过PowerPC的搬运, 这样在很大程度上减轻了CPU的负担,提高了数据传输速度。
4 板级支持包的生成
4.1板级支持包工具的选择和设置
先在http://git.xilinx.com/网站上下载device-tree.git,它是板级支持包(BSP)生成工具。解压后放在EDK安装目录下的EDKswlibbsp,之后点击Software-->
Software Platform Settings就可以发现并选择它了,如图5所示。
图5 板级支持包工具的选择
在device-tree下要把 bootargs的设置成console=ttyUL0,而不是默认的console =ttyS0,否则超级终端将没有输出。这是因为我们在调试时需要RS232串口作为超级终端,用的是XPS UART Lite核,但板级支持包默认的却是UART16500核。
4.2 dts(device tree)文件的生成
xilinx.dts文件是板级支持包工具device tree生成的,它记录了硬件信息。正是这个文件的存在操作系统才能知道本系统有哪些硬件及其属性。在EDK菜单中选择Software-->generate Libraries and BSP就会生成xilinx.dts文件。
5嵌入式Linux的移植
5.1安装用于PowerPC的交叉编译链并设置环境变量
先下载并安装德国DENX公司提供的开发环境编译套件ELDK4.1,用source 命令设置路径和交叉编译环境变量,再用export ARCH=powerpc命令使其支持PowerPC架构。
5.2 准备Linux内核及根文件系统
这不是一般的Linux内核,而是专门针对Xilinx FPGA的linux-2.6-xlnx.git。可以到git.xilinx.com网站下载最新版本的Linux内核。在http://xilinx.wikidot.com/网上下载根文件系统镜像压缩文件ramdisk.image.gz,把ramdisk.image.gz拷贝到内核文件夹的arch/powerpc/boot文件夹中。
5.3准备 device tree文件
需要把把EDK工程中板级支持包工具生成的xilinx.dts复制到嵌入式Linux内核文件夹arch/powerpc/boot/dts中,这样linux才能根据这个文件给硬件设备添加相应的驱动。
5.4内核的裁剪与定制
用命令make 40x/ virtex4_defconfig载入ML405开发板的内核配置,再用make menuconfig打开内核定制图形界面进行裁剪和定制,使满足自己的特定需求,需要选上TCP/IP协议。如果需要调试就要把串口驱动 xilinx uartlite serial port support选上。这样才能使用RS2323作为超级终端。保存配置后用make zImage命令就可以生成内核镜像文件了。
6 测试结果与分析
在EDK中选把硬件文件烧录到FPGA中, 把Linux镜像文件下载到内存中运行,这样一个系统就能运行起来了。编写一个基于socket的网络通信程序,把FPGA作为客户端,把PC机作为服务器端,从FPGA不断的向PC发送基于TCP协议的数据包,来测试每次发送的数据包大小和传输速度之间的关系。当发送的数据包大小为30000Byte时,用tcp/ip协议传输的速率是70Mb/s,用udp协议传输的速率是135Mb/s。
在一定范围内,每次发送的数据包越大,则网络传输速率就越大。传输的速度即与powerpc、内存、内部总线的频率及位宽有关系,也与操作系统及应用程序有关系。
7结束语
本文详细的介绍了基于Linux和FPGA的嵌入式千兆网数据传输的实现方法,测试结果表明传输速度能满足设计指标。由于FPGA和linux都具有很大的灵活性,会给将来系统的升级和变更带来很大方便。
本视频基于Xilinx公司的Artix-7FPGA器件以及各种丰富的入门和进阶外设,提供了一些典型的工程实例,帮助读者从FPGA基础知识、逻辑设计概念
本课程为“从零开始大战FPGA”系列课程的基础篇。课程通俗易懂、逻辑性强、示例丰富,课程中尤其强调在设计过程中对“时序”和“逻辑”的把控,以及硬件描述语言与硬件电路相对应的“
课程中首先会给大家讲解在企业中一般数字电路从算法到流片这整个过程中会涉及到哪些流程,都分别使用什么工具,以及其中每个流程都分别做了
@2003-2020 中国电子顶级开发网