Xilinx Vivado HLS中Floating-Point(浮点)设计
编码风格与技巧
George Wang (王宏强) – Xilinx DSP Specialist
尽管通常Fixed-Point(定点)比Floating-Point(浮点)算法的FPGA实现要更快
Xilinx Vivado HLS工具支持C/C++ IEEE-54标准单精度及双精度浮点数据类型,可以比较容易,快速地将C/C++ Floating-Point算法转成RTL代码。与此同时,为了达到用户期望的FPGA资源与性能, 当使用Vivado HLS directives时需要注意C/C++编码风格与技巧相结合。
1.1 单双精度浮点数学函数
#include <math.h>
float example(float var)
{
return log(var); // 双精度自然对数
}
在C设计中, 这个例子, Vviado HLS 生成的RTL实现将输入转换成双精度浮点,并基于双精度浮点计算自然对数,然后将双精度浮点输出转换成单精
#include <math.h>
float example(float var)
{
return logf(var); // 单精度自然对数
}
在C设计中, logf才是单精度自然对数, 这个例子 Vviado HLS 生成的RTL实现将基于单精度浮点计算自然对数, 而且没有输入输出单双精度的互转。
1.2 浮点运算优化
我们先来看一个例子,三个从代数上看起来差不多的写法,但其在Vivado HLS中综合出来的是三个完全不一样的结果。
void example(float *m0, float *m1, float *m2, float var)
{
*m0 = 0.2 * var; // 双精度浮点乘法,单双精度类型转换
*m1 = 0.2f * var; // 单精度浮点乘法
*m2 = var / 20.0f; // 单精度浮点除法
}
Vivado HLS将日m0, m1, m2综合成不同的RTL实现。
因为0.2是一个不能精确表征的双精度数字, 所以m0运算会被Vivado HLS综合成一个双精度浮点乘法, 并且将var 转换成双精度, 然后将双精度乘法输出m0转换成单精度。
特别注意,如果希望Vivado HLS综合出单精度常熟,需要在常数后面加f, 如0.2f。这样m1综合成一个单精度乘法的输出。同理,m2将被Vivado HLS综合成单精度除法的输出。
我们来看另外一个例子。
void example(float *m0, float *m1, float var)
{
*m0 = 0.2f * 5.0f * var; // *m0 = var;常数乘法被优化掉
*m1 = 0.2f * var * 5.0f; // 两个双精度浮点乘法
}
再来看另一个例子。
void example(float *m0, float *m1, float var)
{
*m0 = 0.5 * var; //
*m1 = var/2; //
}
m0运算会被Vivado HLS综合成一个双精度浮点乘法, 并且将var 转换成双精度, 然后将双精度乘法输出m0转换成单精度。
m1运算会被Vivado HLS综合成简单的右移运算。所以如果用户希望实现对var除以2, 就写成m1这种表达式,而不是m0的表达式。
由于浮点运算相比整型,定点运算耗用更可观的资源。Vivado HLS会尽量用更有效的资源来实现浮点运算,当数据的相关性及约束许可的情况下,在Vivado HLS中,会尽量复用一些浮点运算单元。为了说明这个,我们看一个简单的四个浮点加法例子, Vivado HLS复用一个浮点加法器来串行实现四个浮点加法。
void example(float *r, float a, float b,
float c, float d)
{
*r = a + b + c + d;
}
有时设计需要更高的throughput及更低的latency。这时就需要提高设计的并行度。以下面例子
void example(float r0[32], float a[32], float b[32])
{
#pragma HLS interface ap_fifo port=a,b,r0
#pragma HLS array_reshape cyclic factor=2 variable=a,b,r0
for (int i = 0; i < 32; i++)
{
#pragma HLS pipeline
#pragma HLS unroll factor=2
r0[i] = a[i] + b[i];
}
}
然而,如果更多复杂的运算,或许会导致不独立的浮点运算,在这种情况下,Vivado HLS不能重新排列这些运算的顺序,这样会导致更低的,不是所期望的复用。 下面举例来说明如何提高带有反馈浮点运算的性能。
这个例子的累加会导致recurrence,并且通常浮点加法的latency大于一个时钟周期,加的pi
float example(float x[32])
{
#pragma HLS interface ap_fifo port=x
float acc = 0;
for (int i = 0; i < 32; i++)
{
#pragma HLS pipeline
acc += x[i];
}
return acc;
}
为了对上面例子并行展开,可以对代码如下做较小的改动,也就是拆成先部分累加,再最后累加,当然也需要对输
float top(float x[32])
{
#pragma HLS interface ap_fifo port=x
float acc_part[4] = {0.0f, 0.0f, 0.0f, 0.0f};
for (int i = 0; i < 32; i += 4) { // 手动unroll by 4
for (int j = 0; j < 4; j++) { // 部分累加
#pragma HLS pipeline
acc_part[j] += x[i + j];
}
for (int i = 1; i < 4; i++) { //最后累加
#pragma HLS unroll
acc_part[0] += acc_part[i];
}
return acc_part[0];
}
本视频基于Xilinx公司的Artix-7FPGA器件以及各种丰富的入门和进阶外设,提供了一些典型的工程实例,帮助读者从FPGA基础知识、逻辑设计概念
本课程为“从零开始大战FPGA”系列课程的基础篇。课程通俗易懂、逻辑性强、示例丰富,课程中尤其强调在设计过程中对“时序”和“逻辑”的把控,以及硬件描述语言与硬件电路相对应的“
课程中首先会给大家讲解在企业中一般数字电路从算法到流片这整个过程中会涉及到哪些流程,都分别使用什么工具,以及其中每个流程都分别做了
@2003-2020 中国电子顶级开发网