本文通过对OpenCV中图像类型和函数处理方法的介绍,通过设计实例描述在vivadoHLS中调用OpenCV库函数实现图像处理的几个基本步骤,完成从OpenCV设计到RTL转换综合的开发流程。
开源计算机视觉 (OpenCV) 被广泛用于开发计算机视觉应用,它包含2500多个优化的视频函数的函数库并且专门针对台式机处理器和GPU进行优化。OpenCV的用户成千上 万,OpenCV的设计无需修改即可在 Zynq器件的ARM处理器上运行。但是利用OpenCV实现的高清处理经常受外部存储器的限制,尤其是存储带宽会成为性能瓶颈,存储访问也会限制功耗效 率。使用VivadoHLS高级语言综合工具,可以轻松实现OpenCV C++视频处理设计到RTL代码的转换,输出硬件加速器或者直接在FPGA上实现实时视频处理功能。同时,Zynq All-programmable SOC是实现嵌入式计算机视觉应用的极好方法,很好解决了在单一处理器上实现视频处理性能低功耗高的限制,Zynq高性能可编程逻辑和嵌入式ARM内核, 是一款功耗优化的集成式解决方案。
1 OpenCV中图像IplImage, CvMat, Mat 类型的关系和VivadoHLS中图像hls::Mat类型介绍
OpenCv中常见的与图像操作有关的数据容器有Mat,cvMat和IplImage,这三种类型都可以代表和显示图像,但是,Mat类型侧重于计算,
数学性较高,openCV对Mat类型的计算也进行了优化。而CvMat和IplImage类型更侧重于“图像”,opencv对其中的图像操作(缩放、
单通道提取、图像阈值操作等)进行了优化。在opencv2.0之前,opencv是完全用C实现的,但是,IplImage类型与CvMat类型的关系
类似于面向对象中的继承关系。实际上,CvMat之上还有一个更抽象的基类----CvArr,这在源代码中会常见。
1.1 OpenCV中Mat类型:矩阵类型(Matrix)。
在openCV中,Mat是一个多维的密集数据数组。可以用来处理向量和矩阵、图像、直方图等等常见的多维数据。
Mat有3个重要的方法:
1、Mat mat = imread(const String* filename); 读取图像
2、imshow(const string frameName, InputArray mat); 显示图像
3、imwrite (const string& filename, InputArray img); 储存图像
Mat类型较CvMat与IplImage类型来说,有更强的矩阵运算能力,支持常见的矩阵运算。在计算密集型的应用当中,将CvMat与IplImage类型转化为Mat类型将大大减少计算时间花费。
1.2 OpenCV中CvMat类型与IplImage类型:“图像”类型
在openCV中,Mat类型与CvMat和IplImage类型都可以代表和显示图像,但是,Mat类型侧重于计算,数学性较高,openCV对Mat
类型的计算也进行了优化。而CvMat和IplImage类型更侧重于“图像”,openCV对其中的图像操作(缩放、单通道提取、图像阈值操作等)进行
了优化。
补充:IplImage由CvMat派生,而CvMat由CvArr派生即CvArr -> CvMat -> IplImage
CvArr用作函数的参数,无论传入的是CvMat或IplImage,内部都是按CvMat处理。
在openCV中,没有向量(vector)的数据结构。任何时候,但我们要表示向量时,用矩阵数据表示即可。
但是,CvMat类型与我们在线性代数课程上学的向量概念相比,更抽象,比如CvMat的元素数据类型并不仅限于基础数据类型,比如,下面创建一个二维数据矩阵:
CvMat* cvCreatMat(int rows ,int cols , int type);
这里的type可以是任意的预定义数据类型,比如RGB或者别的多通道数据。这样我们便可以在一个CvMat矩阵上表示丰富多彩的图像了。
1.3 OpenCV中IplImage类型
在OpenCV类型关系上,我们可以说IplImage类型继承自CvMat类型,当然还包括其他的变量将之解析成图像数据。
IplImage类型较之CvMat多了很多参数,比如depth和nChannels。在普通的矩阵类型当中,通常深度和通道数被同时表示,如用32位 表示RGB+Alpha.但是,在图像处理中,我们往往将深度与通道数分开处理,这样做是OpenCV对图像表示的一种优化方案。
IplImage的对图像的另一种优化是变量origin----原点。在计算机视觉处理上,一个重要的不便是对原点的定义不清楚,图像来源,编码 格式,甚至操作系统都会对原地的选取产生影响。为了弥补这一点,openCV允许用户定义自己的原点设置。取值0表示原点位于图片左上角,1表示左下角。
1.4 VivadoHLS中图像数据类型hls::Mat<>
VivadoHLS视频处理函数库使用hls::Mat<>数据类型,这种类型用于模型化视频像素流处理,实质等同于
hls::steam<>流的类型,而不是OpenCV中在外部memory中存储的matrix矩阵类型。因此,在HLS实现OpenCV
的设计中,需要将输入和输出HLS可综合的视频设计接口,修改为Video
stream接口,也就是采用HLS提供的video接口可综合函数,实现AXI4 video
stream到VivadoHLS中hls::Mat<>类型的转换。
2 使用VivadoHLS实现OpenCV到RTL代码转换的流程
2.1 OpenCV设计中的权衡
OpenCV图像处理是基于存储器帧缓存而构建的,它总是假设视频frame数据存放在外部DDR
存储器中,因此,OpenCV对于访问局部图像性能较差,因为处理器的小容量高速缓存性能不足以完成这个任务。而且出于性能考虑,基于OpenCV设计的
架构比较复杂,功耗更高。在对分辨率或帧速率要求低,或者在更大的图像中对需要的特征或区域进行处理是,OpenCV似乎足以满足很多应用的要求,但对于
高分辨率高帧率实时处理的场景下,OpenCV很难满足高性能和低功耗的需求。
基于视频流的架构能提供高性能和低功耗,链条化的图像处理函数能减少外部存储器访问,针对视频优化的行缓存和窗口缓存比处理器高速缓存更简单,更易于用FPGA部件,使用VivadoHLS中的数据流优化来实现.
VivadoHLS对OpenCV的支持,不是指可以将OpenCV的函数库直接综合成RTL代码,而是需要将代码转换为可综合的代码,这些可综合的视频库称为HLS视频库,由VivadoHLS提供。
OpenCV函数不能直接通过HLS进行综合,因为OpenCV函数一般都包含动态的内存分配、浮点以及假设图像在外部存储器中存放或者修改。
VivadoHLS视频库用于替换很多基本的 OpenCV函数,它与OpenCV具有相似的接口和算法,主要针对在FPGA架构中实现的图像处理函数,包含了专门面向FPGA的优化,比如定点运算而 非浮点运算(不必精确到比特位),片上的行缓存(line buffer)和窗口缓存(window buffer)。
2.2 VivadoHLS实现OpenCV设计流程介绍
使用VivadoHLS实现OpenCV的开发,主要的三个步骤如下:
在计算机上开发OpenCV应用,由于是开源的设计,采用C++的编译器对其进行编译,仿真和debug,最后产生可执行文件。这些设计无需修改即可在 ARM内核上运行OpenCV应用。
使用I/O函数抽取FPGA实现的部分,并且使用可综合的VivadoHLS Video库函数代码代替OpenCV函数的调用。
运行HLS生成RTL代码,在vivadoHLS工程中启动co-sim,重用openCV的测试激励验证产生的RTL代码。在ISE或者Vivado开发环境中做RTL的集成和SOC/FPGA实现。
2.2.1 VivadoHLS视频库函数
HLS视频库是包含在hls命名空间内的C++代码。#include “hls_video.h”
与OpenCV等具有相似的接口和等效的行为,例如:
OpenCV库:cvScale(src, dst, scale, shift);
HLS视频库:hls::catfrustrated:cale<...>(src, dst, scale, shift);
一些构造函数具有类似的或替代性的模板参数,例如:
OpenCV库:cv::Mat mat(rows, cols, CV_8UC3);
HLS视频库:hls::Mat mat(rows, cols);
ROWS和COLS指定处理的最大图像尺寸
2.2.2 VivadHLS实现OpenCV设计的局限性
首先,必须用HLS视频库函数代替OpenCV调用。
其次,不支持OpenCV通过指针访问帧缓存,可以在HLS中使用VDMA和 AXI Stream adpater函数代替。
再者,不支持OpenCV的随机访问。HLS对于读取超过一次的数据必须进行复制,更多的例子可以参见见hls::catvery-happy:uplicate()函数。
最后,不支持OpenCVS的In-place更新,比如 cvRectangle (img, point1, point2)。
下面表格2.2.2列举了OpenCV中随机访问一帧图像处理对应HLS视频库的实现方法。
OpenCV |
HLS视频库 |
|
读操作 |
pix = cv_mat.at<T>(i,j) pix = cvGet2D(cv_img,i,j) |
hls_img >> pix |
写操作 |
cv_mat.at<T>(i,j) = pix cvSet2D(cv_img,i,j,pix) |
hls_img << pix |
表 2.2.2 OpenCV和HLS中对一帧图像像素访问对应方法
2.3 用HLS实现OpenCV应用的实例(快速角点滤波器image_filter)
我们通过快速角点的例子,说明通常用VivadoHLS实现OpenCV的流程。首先,开发基于OpenCV的快速角点算法设计,并使用基于OpenCV
的测试激励仿真验证这个算法。接着,建立基于视频数据流链的OpenCV处理算法,改写前面直觉的OpenCV的通常设计,这样的改写是为了与HLS视频
库处理机制相同,方便后面步骤的函数替换。最后,将改写的OpenCV设计中的函数,替换为HLS提供的相应功能的视频函数,并用VivadoHLS综
合,最后在Xilinx开发环境下实现。当然,这些可综合代码也可在处理器或ARM上运行。
2.3.1 设计基于OpenCV的视频滤波器设计和测试激励
在这个例子中,首先设计开发完全调用OpenCV库函数的快速角点滤波器设计opencv_image_filter.cpp和这个滤波器的测试激励
opencv_image_filter_tb.cpp,测试激励用于仿真验证opencv_image_filter算法功能。算法和测试激励设计代码
如下:
void opencv_image_filter(IplImage* src, IplImage* dst)
{
IplImage* gray = cvCreateImage( cvGetSize(src), 8, 1 );
std::vector keypoints;
cv::Mat gray_mat(gray,0);
cvCvtColor( src, gray, CV_BGR2GRAY );
cv::FAST( gray_mat, keypoints, 20, true);
cvCopy( src,dst);
for (int i=0;i
{
cvRectangle(dst, cvPoint(keypoints[i].pt.x-1,keypoints[i].pt.y-1),
cvPoint(keypoints[i].pt.x+1,keypoints[i].pt.y+1), cvScalar(255,0,0),CV_FILLED);
}
cvReleaseImage( &gray );
}
例子2.3.1.1 通常的OpenCV视频处理代码opencv_image_filter.cpp
int main (int argc, char** argv) {
IplImage* src=cvLoadImage(INPUT_IMAGE);
IplImage* dst = cvCreateImage(cvGetSize(src), src->depth, src->nChannels);
opencv_image_filter(src, dst);
cvSaveImage(OUTPUT_IMAGE_GOLDEN, dst);
cvReleaseImage(&src);
cvReleaseImage(&dst);
return 0;
}
例子2.3.1.2 OpenCV视频处理测试激励代码opencv_image_filter_tb.cpp
上面的例子是直接调用OpenCV在处理器上软件应用实现的例子,可以看到在算法设计中直接调用opencV库函数,测试激励读入图像,经过滤波器处理输出的图像保存分析。可以看到,算法的处理基于IPIimage类型,输入和输出图像都使用此类型。
2.3.2 使用IO函数和Vivado HLS视频库替换OpenCV函数库
需要特别说明的是,xilinx通常使用的视频处理模块都是基于axi4
streaming协议进行不同模式见像素数据的交互,也就是我们所说的AXI4
video接口协议格式。为了和xilinx视频库接口协议统一,VivadoHLS提供了视频接口函数库,用于从OpenCV程序中抽取需要进行RTL
综合转换的顶层函数,并把这些可综合的代码和OpenCV不可综合转换的代码进行隔离。然后,对需要综合转换为RTL代码的OpenCV函数,用
xilinx
VivadoHLS提供相应功能的可综合video函数进行替换。最后在C/C++编译环境下仿真验证OpenCV代码和替换video函数后功能的一
致,并在VivadoHLS开发环境中做代码综合和产生RTL代码的co-sim混合仿真验证。
VivadoHLS可综合的视频接口函数:
Hls::AXIvideo2Mat 转换AXI4 video stream到hls::Mat表示格式
Hls::Mat2AXIvideo 转换hls::Mat数据格式到AXI4 video stream
首先,我们对2.3.1中OpenCV的设计进行改写,改写的代码还是完全基于OpenCV的函数,目的是为了对视频的处理机制基于视频流的方式,与VivadoHLS视频库提供函数的处理机制一致。下面是OpenCV设计的另一种写法:
void opencv_image_filter(IplImage* src, IplImage* dst)
{
IplImage* gray = cvCreateImage( cvGetSize(src), 8, 1 );
IplImage* mask = cvCreateImage( cvGetSize(src), 8, 1 );
IplImage* dmask = cvCreateImage( cvGetSize(src), 8, 1 );
std::vector keypoints;
cv::Mat gray_mat(gray,0);
cvCvtColor(src, gray, CV_BGR2GRAY );
cv::FAST(gray_mat, keypoints, 20, true);
GenMask(mask, keypoints);
cvDilate(mask,dmask);
cvCopy(src,dst);
PrintMask(dst,dmask,cvScalar(255,0,0));
cvReleaseImage( &mask );
cvReleaseImage( &dmask );
cvReleaseImage( &gray );
}
例子2.3.2.1另一种OpenCV设计应用opencv_image_filter.cpp
其次,使用Vivado HLS视频库替代标准OpenCV函数,并使用可综合的视频接口函数,采用video stream的方式交互视频数据。用于FPGA的硬件可综合模块由VivadoHLS视频库函数与接口组成,我们用hls命名空间中的相似函数代替 OpenCV函数,增加接口函数构建AXI4 stream类型的接口。
void image_filter(AXI_STREAM& input, AXI_STREAM& output, int rows, int cols)
{
//Create AXI streaming interfaces for the core
#pragma HLS RESOURCE variable=input core=AXIS metadata="-bus_bundle INPUT_STREAM"
#pragma HLS RESOURCE variable=output core=AXIS metadata="-bus_bundle OUTPUT_STREAM"
#pragma HLS RESOURCE core=AXI_SLAVE variable=rows metadata="-bus_bundle CONTROL_BUS"
#pragma HLS RESOURCE core=AXI_SLAVE variable=cols metadata="-bus_bundle CONTROL_BUS"
#pragma HLS RESOURCE core=AXI_SLAVE variable=return metadata="-bus_bundle CONTROL_BUS"
#pragma HLS interface ap_stable port=rows
#pragma HLS interface ap_stable port=cols
hls::Mat _src(rows,cols);
hls::Mat _dst(rows,cols);
#pragma HLS dataflow
hls::AXIvideo2Mat(input, _src);
hls::Mat src0(rows,cols);
hls::Mat src1(rows,cols);
#pragma HLS stream depth=20000 variable=src1.data_stream
hls::Mat mask(rows,cols);
hls::Mat dmask(rows,cols);
hls::catfrustrated:calar<3,unsigned char> color(255,0,0);
hls::catvery-happy:uplicate(_src,src0,src1);
hls::Mat gray(rows,cols);
hls::CvtColor(src0,gray);
hls::FASTX(gray,mask,20,true);
hls::catvery-happy:ilate(mask,dmask);
hls::cattongue:aintMask(src1,dmask,_dst,color);
hls::Mat2AXIvideo(_dst, output);
}
例子2.3.2.2 采用VivadoHLS视频库替换后可综合的设计opencv_image_filter.cpp
最后,在vivadoHLS开发环境下综合例子2.3.2.2的设计,产生RTL代码并重用OpenCV的测试激励验证RTL代码功能。
3 VHLS实现OpenCV设计流程总结
通过上面章节介绍以及在vivadoHLS工具中实现opencV设计的例子可以看出,OpenCV函数可实现计算机视觉算法的快速原型设计,并使用
VivadoHLS工具转换为RTL代码在FPGA或者Zynq
SOC上实现高分辨率高帧率的实时视频处理。计算机视觉应用与生俱来的异构特性,使其需要软硬件相结合的实现方案。Vivado
HLS视频库能加快OpenCV函数向FPGA可编程架构的映射。
本视频基于Xilinx公司的Artix-7FPGA器件以及各种丰富的入门和进阶外设,提供了一些典型的工程实例,帮助读者从FPGA基础知识、逻辑设计概念
本课程为“从零开始大战FPGA”系列课程的基础篇。课程通俗易懂、逻辑性强、示例丰富,课程中尤其强调在设计过程中对“时序”和“逻辑”的把控,以及硬件描述语言与硬件电路相对应的“
课程中首先会给大家讲解在企业中一般数字电路从算法到流片这整个过程中会涉及到哪些流程,都分别使用什么工具,以及其中每个流程都分别做了
@2003-2020 中国电子顶级开发网