你的位置:EETOP 赛灵思(Xilinx) 社区 >> >> 全部 >> 详细内容

跟着我从零开始入门FPGA(一周入门XXOO系列)-7、设计一个只有4条指令的CPU

发布者:jackzhang 时间:2015-03-18 08:33:26

(本连载共七部分,这是第部分)

作者:McuPlayer2013   (EETOP FPGA版块版主) 原帖地址:http://bbs.eetop.cn/thread-385362-1-1.html

以下是正文

7、设计一个只有4条指令的CPU


我们要设计一个简单的CPU

既然做CPU,我们要做流水线的,要简单,做2级流水线就够了。

为了实例的简单,我们选择设计一个8bit的MCU的内核
仍然我们要简单,所以选择RISC的内核,类似PIC的结构
还是为了要简化,我们只支持4条指令
继续为了要简化,我们不考虑Status寄存器

有人会问,只有4条指令,你还加减法都有,有一个不就可以了。
这也是我有意的,你想,假设ALU只能做加法,你不觉得ALU这个名称太不名副其实了吗。

mov  A,#35H 把立即数mov到A寄存器
add  A,#42H (A) + 12 -> A
sub  A,#62H (A) - 12 -> A
JMP  imd    跳转到某地址


我们先给他们做机器编码,我们用16bit宽度的指令集编码

0x0035      00是MOV的OP code
0x0142      01是ADD的OP Code
0x0265      02是SUB的OP code
0x8000      80是JMP的OP CODE

我们继续看,指令集,用Verilog的方式来描述
16'b0000_0000_????_????     MOV
16'b0000_0001_????_????     ADD
16'b0000_0010_????_????     SUB
16'b1???_????_????_????     JMP

我们可以看到JMP的跳转地址范围是15个bit地址,也就是32K地址范围

有人说ALU很重要,好,我们就先来看ALU的组成,因为只有加减2种情况,所有ALU的OP代码只用1个bit表示
op为1的时候,做加法,为0的时候做减法。

module alu(input op, input[7:0] in1, input[7:0] in2, output[7:0] out)
    assign out = op ? (in1+in2) : (in1-in2);

看到上面的代码,估计不少人大跌眼镜,莫非传说中的alu就这么简陋。
没错,如果你只要做加法和减法,而且不考虑进位和溢出的ALU,就是这么easy的。

好了,cpu的运转过程,包括加载指令,解码指令,执行指令,大家都知道。

我们还要使用流水线技术,虽然这里不用也许更简单,但我们的目标是学习。

      一  |   加载指令1   |   加载指令2    |   加载指令3    |   ..........
----------+---------------+----------------+----------------+-----------------
      二  |               |   解码1 执行1  |   解码2 执行2  |   解码3 执行3

我们可以看到加载和解码和执行,并没有在一个周期中完成,而是分开了
在运行第二条指令的时候,CPU正在加载第三条指令,一心二用,事事不耽搁。

clkcnt;

always @(posdge clk)
    if(nCS)
        clkcnt <= 0;
        instr <= 0;
    else
        instr <= rom_dat_out;


下面是CPU的解码和执行过程

always @(posdge clk)
    if(!nCS)
    casex(instr)
        16'b0000_0000_????_????:        //MOV
            begin
                acc <= instr[7:0];
                pc <= pc + 16'h0001;
            end
        16'b0000_0001_????_????:        //ADD
            begin
                acc <= aluout;
                pc <= pc + 16'h0001;
            end
        16'b0000_0010_????_????:        //SUB
            begin
                acc <= aluout;
                pc <= pc + 16'h0001;
            end
        16'b1???_????_????_????:        //JMP
            begin
                pc <= instr[14:0];
                pc <= pc + 16'h0001;
            end


下面完成CPU核心和ALU之间的连线

assign aluop  = (instr[15:8]==8'h01);
assign aluin1 = acc;
assign aluin2 = instr[7:0];

alu alu1(aluop, aluin1, aluin2, aluout);

有人说,只看到执行指令,没看到解码指令的过程,有木有啊?当然有

16'b0000_0000_????_????     MOV
16'b0000_0001_????_????     ADD
16'b0000_0010_????_????     SUB
16'b1???_????_????_????     JMP

这几个逐个的case不就是在做解码?只是没有独立的解码步骤而已,因为太简单了嘛。

还有个地方,我故意做了遗漏,就是JMP指令的处理。

所谓流水线,就是取指和执行是同时的,但JMP的到来,带来了异常。
正常都是PC加一,所以取指其实一直在取下一条指令,而JMP的目标是不确定的,所以取的指令就不对了

我们一般称之为预测失败,然后继续取JMP目标地址的指令,但执行部分,会有一个空的指令周期。
从CPU的用户角度看,就是JMP指令要使用2个指令周期。

CPU的设计基本到此结束了。
关于FPGA,我也没有能力做太深入的讲解了,否则误人子弟,岂不是背离了我的目标。

我的blog基本上也是很少更新,你点进去看也没多少货。
有个哥们说得好,MP的博客,写得比别人的微薄还短小。

至此,这个帖子连载终于完成了,总算没有辜负自己和一些网友。

最新课程

  • 深入浅出玩儿转FPGA

    本视频基于Xilinx公司的Artix-7FPGA器件以及各种丰富的入门和进阶外设,提供了一些典型的工程实例,帮助读者从FPGA基础知识、逻辑设计概念

  • 从零开始大战FPGA基础篇

    本课程为“从零开始大战FPGA”系列课程的基础篇。课程通俗易懂、逻辑性强、示例丰富,课程中尤其强调在设计过程中对“时序”和“逻辑”的把控,以及硬件描述语言与硬件电路相对应的“

  • Verilog基础及典型数字

    课程中首先会给大家讲解在企业中一般数字电路从算法到流片这整个过程中会涉及到哪些流程,都分别使用什么工具,以及其中每个流程都分别做了