作者:zhanghe901126
来源: http://bbs.eetop.cn/thread-450220-1-1.html
一、CRC基本原理
在串行数据流的最有效的检错方案是CRC(Cyclic Redundancy
Check)循环冗余检验,CRC循环冗余校验最根本的原理就是将原始数据除以某个固定的数,然后所得的余数就是CRC校验码,根据校验码位数的不同常用
的CRC循环冗余校验算法有:CRC8、CRC12、CCITT CRC16、ANSI
CRC16、CRC32。这次我只实现了CRC8的算法,至于CRC16或CRC32下次再研究。
对于CRC的基本原理我们可以根据具体的硬件电路图来理解,通常CRC循环冗余校验可以表示为带有反馈的移位寄存器,移位寄存器的阶数就是CRC字节的位
数。另一种表示方法是将CRC表示为X的多项式,X的幂次数就是CRC字节相应的位数,系数为“1”表示相对应阶数的寄存器有反馈,系数为“0”表示无反
馈。
计算之前先将移位寄存器全部清零,然后将数据一位一位地串行方式输入移位寄存器,当所要计算的有用数据最后一位输入后,此时移位寄存器中的值就是所输入这段有用数据的CRC8校验值。
我们可以通过CRC8的两个重要性质来验证我们事先CRC8算法的正确性,这两个性质在接下来的仿真过程中要用到:
1)当CRC8的移位寄存器的初始值为八位的数据A时,如果将相同的8位数据A依次输入给移位寄存器,寄存器将清零。也可以说成是A除以A余数为0。
2)当CRC8的移位寄存器的初始值为八位的数据 时,如果我们将 的反码 依次输入给移位寄存器,移位寄存器的结果将是35H,也就是十进制的53。利用该特性可以对CRC8算法进行验证。
二、算法实现
以上所介绍的这种串行移位寄存器的方式主要是帮助我们掌握CRC校验的基本原理,当然实现上也可以用Verilog语言实现这种硬件电路,可想而知这种方式计算起来是相当慢的,要1个clk计算1bit。常用的CRC8算法是查找表算法。
该算法是以一次输入8位数据din为单位的,也就是说一个时钟内并行输入一个字节数据,下一个时钟即可算出CRC8校验字节。利用Verilog语言先定
义一个CRC8字节的寄存器,在CRC8寄存器内容的基础上,利用新输入的8位数据计算新的CRC8字节来更新CRC8寄存器。如果CRC8寄存器初始值
为0,那么输入8位数据后计算得到的CRC8就有256种可能。因此,定义了一个查找表reg [7:0]
CRC8_table[255:0]并初始化为如下所示:
下面说下实现该算法的过程:输入的8位数据din即作为查找表CRC8_table的索引i = din,然后执行CRC8 <= CRC8_table语句就得到了该字节的CRC8校验码,然而以上过程的前提是CRC8寄存器初始化为0,若CRC8寄存器不为0,那么查找表的索引i的计算应为当前CRC8与输入数据的异或,即 i = CRC8^din,然后执行语句CRC8 <= CRC8_table就得到了新的CRC8校验码。依次循环处理每个字节。。。。。。
首先定义了个module
SCLK输入时钟,在上升沿对输入数据din[7:0]采集,使能信号EN, 计算结果CRC8[7:0]
仿真结果:
1)输入数据依次为:8‘h11 8‘h22 8‘h33 8‘h44 8‘h55 8‘h66 8‘h77 8‘h88 在最后一个字节的下一个时钟上升沿得到校验结果为8’h7b
2)根据性质一,如果我们继续输入8‘h7b,得到的结果将是8’h00
3)根据性质二,8‘h7b的反码是8’h84,如果在1)数据的基础上继续输入8’h84,将得到8‘h35
,在封装IP核的过程中我们只需要上一步的.v文件,也就是CRC8_LookupTable.v文件。
1)打开vivado, 点击 manage IP 创建新IP,如下图:
2)选择IP核工程路径:CRC8_LUT_IP这个文件夹是之前创建的,以后我们所有的创建的文件都在这个文件下,这个路径很重要
3)点击finish后,在TOOL下拉菜单选择Create and Package IP
4)点击next,选择Create New AXI4 Peripheral,注意默认的路径是 CRC8_LUT_IP/managed_ip_project ,这个事错误的,如果在这个路径下的话,在接下来的过程中会遇到错误,将路径改为: CRC8_LUT_IP下
5)添加IP核的详细信息:
6)更改AXI总线名字,添加4个32位的slv_reg寄存器,其实都是默认的即可
7)选择Generate Drivers,点击next,然后finish
8)这样我们就可以在IP Catalog下搜索CRC,就会找到自己生成的IP核"CRC8_LUT_ip_V1_0", 然后右键选择Edit in IP Packager,这样就会打开IP核编辑界面:
9)在flow navigator栏中选择 add aoirce 添加之前自己编辑的CRC算法的.v文件,即CRC8_LookupTable.v
10)会发现在工程里一共3个.v文件:CRC8_LUT_ip_v1_0_S_AXI.v 和 CRC8_LUT_ip_v1_0.v
和刚刚添加的自己的CRC8_LookupTable.v文件,然后需要修改CRC8_LUT_ip_v1_0_s_AXI.v
文件,把我们的IP核挂载到AXI总线上,其实就是一个简单的例化过程。由于我所创建的IP核不需要和FPGA外部通信,不用分配引脚,只需和AXI总线
通信,所以就不用在CRC8_LUT_ip_v1_0_S_AXI.v添加用户input或者output,只需把slv_reg 0 1 2 3
分别连接到sclk、en、din和CRC8.
由于slv_reg3是一个寄存器型的,所以要定义一个wie型变量CRC8,再连接到slv_reg3,不然综合会出错。
11)然后保存,综合,如果报错,继续修改综合,知道没有报错。
12)综合完成后,点击Package IP - CRC8_LUT_ip标签页,点击Categories ,选择我们的IP核将会出现在IP
catalog的哪个类别里面,如果选择“basic elements” 就会在IP catalog的basic elements类别下找到,如图
13)添加IP核支持的芯片型号,也就是添加family,因为要在microZed板子上跑,所以要把zynq系列添加进来
[attach]586851[/attach]
14)最后封装IP,如果我们能在Create archive of IP所示的路径下找到这个压缩文件,就说明我们的IP制定成功了~
本视频基于Xilinx公司的Artix-7FPGA器件以及各种丰富的入门和进阶外设,提供了一些典型的工程实例,帮助读者从FPGA基础知识、逻辑设计概念
本课程为“从零开始大战FPGA”系列课程的基础篇。课程通俗易懂、逻辑性强、示例丰富,课程中尤其强调在设计过程中对“时序”和“逻辑”的把控,以及硬件描述语言与硬件电路相对应的“
课程中首先会给大家讲解在企业中一般数字电路从算法到流片这整个过程中会涉及到哪些流程,都分别使用什么工具,以及其中每个流程都分别做了
@2003-2020 中国电子顶级开发网