作者:Jeremy Banks,Curtiss-Wright 产品经理
Jim Everett,Xilinx 产品经理
更新后的 FPGA 夹层卡规范提供无与伦比的高 I/O 密度、向后兼容性。
作为使用 FPGA 和高速 I/O 的嵌入式计算设计的重要发展,名为 FMC+ 的最新夹层卡标准将把卡中的千兆位收发器(GT)的总数量从 10 个扩展到 32 个,最大数据速率从 10Gbps 提升到 28Gbps,同时保持与当前 FMC 标准实现向后兼容。
这些功能与使用 JESD204B 串行接口标准的新器件以及 10G 和 40G 光学器件及高速串行存储器也非常吻合。FMC+ 可满足最具挑战性的 I/O 要求,为开发人员提供了双重优势:夹层卡的灵活性,以及单芯片设计的高 I/O 密度。
FMC+ 规范是在去年制定和细化的。VITA 57.4 工作组已经批准该规范并将在 2016 年初提交 ANSI 投票。下面详细介绍一下这一重要的新标准,了解其对高级嵌入式设计的影响。
夹层卡是一种为嵌入式系统添加特定功能的有效且广泛使用的方法。因为夹层卡是连接在基础卡或载卡上,而不是直接插在背板上,夹层卡可以轻松更换。对系统设计人员来说,这意味着既能够灵活配置,又可以轻松升级。但由于连接问题或安装到开发板上需占用额外的空间,这种灵活性往往会以牺牲功能为代价。
对于 FPGA,主要的开放标准是 ANSI/VITA 57.1,也称之为 FPGA 夹层卡 (FMC) 规范。最新标准 FMC+(更正式的说法,即 VITA 57.4)通过大幅增强千兆位串行接口的功能,扩展了现有 FMC 标准的功能。
与单芯片解决方案相比,FMC+ 能解决基于夹层卡的 I/O 的许多不足,同时提供更高的灵活性和性能。同时 FMC+ 标准具有后向兼容,符合 FMC 的发展历史并满足其用户群体需求。
该 FMC 标准定义的是一种小型夹层卡,其高度和宽度类似于久成熟的 XMC 或 PMC,但长度只有其一半。这意味着 FMC 与开放标准格式相比,组件板级空间更小。但 FMC 不需要往往占用大量板级空间的总线接口,例如 PCI-X。作为替代,FMC 使用供电要求较为简单的直连 I/O 与主控 FPGA 通信。这意味着虽然尺寸更小,但 FMC 实际上有比它们的 XMC 同等产品更大的 I/O 容量和 PMC 和 XMC 规范一样,FMC 和 FMC+ 也同时提供空气冷却和传导冷却两种选择,因此商业和军用市场各自需求的普通和耐用型应用都能适用。
FMC 规范解析起来相当简单。该标准为高引脚数(HPC)设计可提供多达 160 个单端或 80 个差分并联 I/O 信号,为低引脚数 (LPC) 设计提供一半数量的 I/O 信号。可以设置多达 10 个全双工 GT 连接。这些 GT 适用于光纤或其他串行接口。此外,FMC 规范还定义了关键的时钟信号。所有这些 I/O 都是可选的,虽然大部分主机现在支持完全连接。
FMC 规范还定义了多种电源输入,虽然夹层卡定义的是由主机供电。这种方法的工作方式是先给夹层卡部分供电,这样主机就能够询问 FMC,然后 FMC 通过为 VADJ 定义电压范围来做出响应。如果主机能够提供该电压范围,则一切顺利进行。不在夹层卡上设主电源调整既能节省空间,又能降低夹层卡的功耗。
设计人员可将 FMC 用作任何用户想连接到 FPGA 的功能,例如数字 I/O、光纤、控制接口、存储器或附加处理。但模拟 I/O 仍然是 FMC 技术最常见的用途。FMC 规范适用于相当大范围的快速高精度 I/O,但也需要权衡使用,尤其是对使用并行接口的高速部件来说。
例如德州仪器的 ADC12D2000RF 双通道 2 Gsps 12 位 ADC 使用 1:4 复用总线接口,因此该总线速度对主控 FPGA 来说不算过快。数字数据接口单独需要 96 个信号(48 个 LVDS 对)。对这种级别的器件,FMC 只能支持一个此类器件,即便有足够的空间容纳更多器件,但 FMC 的上限是 160 个信号。较低精度器件就算是工作在较高速度下,例如那些工作在 8 位数据通道上的器件,即便换衡器、放大器、时钟等提出更高的前端模拟耦合要求,也可以允许更多通道数量。
对使用并行接口,运行速度在 5 Gsps 或 6 Gsps(吞吐量大于 50Gbps),精度大于 8 位的模拟接口,FMC 规范开始无法应对。站在市场的角度,从通道密度、速度和精度来看,主流 FMC 的吞吐量在 25-50 Gbps 之间。这样的性能水平是物理封装尺寸与到主控 FPGA 的可用连接权衡的结果。
除了并行连接,FMC 规范还支持多达 10 个双工高速串行(GT)链路。
图 1 - FMC 借助 JESD204B 缩小封装带来的影响
* VADJ:由夹层卡定义,由主机提供的电压电平
表 1 - FMC 和 FMC+ 连接一览表
这些接口对光纤 I/O、以太网、混合存储立方体 (HMC) 和 Bandwidth Engine 等新兴技术以及使用 JESD204B 接口的新一代模拟 I/O 器件有用。
虽然 JESD204 串行接口标准(目前为修订版“B”)问世已有一段时间,直到最近它才被市场广泛采用,成为新一代高采样率数据转换器的串行接口标配。这种广泛采用背后的推动力来自电信行业对更小型化、更低功耗和更低成本器件的渴求。
如前文所述,采用并行接口的双通道 2 Gsps、12 位 ADC 需要大量的 I/O 信号。这一要求直接影响到封装尺寸。在本例中要求使用 292 引脚封装,尺寸大致为 27x27mm(虽然下一代引脚几何结构能让封装尺寸缩小到不足 20x20mm)。
而采用 JESD204B 连接的同等器件可以采用 68 引脚、10x10mm 封装,同时功耗更低。
这种封装尺寸的大幅缩减与不断演进的 FPGA 形成良好的搭配,因为 FPGA 正在提供数量不断增长、速度不断提升的 GT 链路。图 1 所示的是封装尺寸和 FMC/FMC+ 开发板尺寸的示例。
根据采样率要求的数据吞吐能量、精度和模拟 I/O 通道数量,典型的使用 JESD204B 接口的高速 ADC 和 DAC 有 1-8 个工作在 3-12Gbps 速率上的 GT 链路。
FMC 规范定义的是尺寸相对较小的夹层卡,但随着 JESD204B 器件的兴起,可用板级空间内能够容纳更多部件。FMC 规范定义的最多 10 个 GT 链路是一个可用的数量。就是这有限数量的 GT 链路只需使用并行 I/O 所需引脚数量的一部分,就能够提供 80 Gbps乃至更高的吞吐量。
使用 JESD204B 等接口的串行连接 I/O 器件的兴起,确实给电子战的部分细分应用带来了不足,例如数字化射频存储器 (DRFM)。因数据流水线较长,串行接口不可避免地会带来更大的时延。对 DRFM 应用来说,数据输入到数据输出之间的时延是一个根本性的性能参数。虽然各种串行连接器件之间的时延往往有很大不同,新一代器件会让数据以越来越快的速度穿过流水线,其中部分器件有望具备调节流水线深度的能力。究竟能实现多大的改进,仍有待观望。
今天部分采样率大于 1Gbps 的标准 ADC 器件的时延低于 100 ns。其他应用能够容忍这一时延,或忽略不计,包括软件定义射频 (SDR)、雷达告警接收器和其他信号情报 (SIGINT) 细分领域。在大众市场化电信基础设施的推动下,新一代 RF ADC 和 DAC 技术得到了广泛使用,这些应用也因此获得了显著优势。
在 FPGA 社区之外,新一代 DSP 器件也在开始采用 JESD204B。但是 FPGA 很有可能仍然能够占据最能充分发挥宽带模拟 I/O 器件功能的位置。这是因为 FPGA 能以更优异的并行性处理巨大的数据量。
为将 FMC 提升到全新的高度,VITA 57.4 工作组已经使用工作在更高速度上的更大数量 GT 链路制定出一个规范。FMC+ 只是给 FMC 连接器增加外层列来处理更多信号,没有更改任何电路板形状或机械结构,因此具备完整的 FMC 后向兼容性。
新增行可以构成增强型连接器的组成部分,从而最大限度地减少对可用板级空间的占用。FMC+ 规范把可用 GT 链路的最大数量从 10 个增加到 24 个,并可选择添加另外 8 个链路,从而实现合计 32 个全双工链路。额外的链路使用 HSPCe 单独连接器(HSPC 为主连接器)。表 1 是 FMC 和 FMC+ 连接的概览多个独立信号完整性团队对更高的 28Gbps 数据率进行了特性描述和验证。在包含并行接口的情况下,每个方向的最大双工吞吐量现在能够超过 900Gpbs。关于同时支持 FMC 和 FMC+ 的不同功能的数字化解决方案预期能达到的净吞吐量的略图,请参阅图 2。
图 2 - FMC 与 FMC+ 数字化器的吞吐能量对比
设计人员可以利用 FMC+ 实现的更大吞吐量充分发挥提供巨大 I/O 带宽的新器件的优势。这里仍然需要有权衡,例如有多少器件能安装到该夹层卡的可用空间中,但对适度数量的通道而言,与今天的 FMC 规范相比,可实现的吞吐量已经是巨大的飞跃。
在今后几年里可以合理预计高精度 ADC 和 DAC 将突破 10 Gsps 壁垒,使用直接 RF 采样支持 L-、S- 乃至 C 波段频率的极宽宽带通信。在 10Gbps 以下,12 位、14 位乃至 16 位精度的转换器正在兴起,部分支持多个通道。这些器件的大部分将使用配备 12 Gbps 通道的 JESD204B(或更新版本)的信号处理,直至更新一代产品让这一速度迈上新的高度。这些快速发展背后的动力来自电信行业,但国防工业也能加以利用,以满足尺寸、重量以及成本 (SWAP-C) 要求。
虽然和 FMC 类似,FMC+ 也很可能被 ADC、DAC 和收发器产品左右,FPGA 提供的更大 GT 密度让它能用于其他功能。两个值得一提的功能是光纤和新型串行存储器。
和 JESD204B 一样,存在对更快、更密集光纤的需求。使用光纤排带的器件能让部件的尺寸最小。因为 FMC+ 的空间能立即支持 24 路全双工光纤链路,有 FMC+ 支持的较高速度,该应用很有可能率先实现。每路光纤 28Gbps 的带宽将让吞吐量迅速地迈过单芯片夹层卡 100G 和 400G 大关。今天在现行 FMC 格式上的 100G 光传输能力正在兴起。
另一个适用于 FMC+ 的新兴领域是混合存储立方体 (HMC) 和 MoSys 的 Bandwidth Engine 等串行存储器。这些新颖的器件属于全新一类高性能存储器,
借助 GT 连接功能可提供前所未有的系统性能和带宽。(赛灵思中国通讯第 43 期 ,查看这些新存储器类型。)
新一代 FMC 规范已经推出,正在适应串行连接器件推动的新技术。FMC 行业的主要参与者已经开始采用这一规范。图 3 所示的是采用 FMC+ 的第一款赛灵思演示板 KCU114。FMC 标准借助新的 FMC+ 涅槃重生并已呱呱落地,为新一代高性能 FPGA 驱动应用做好了准备。
图 3 - 采用 FMC+ 的赛灵思 KCU114 演示板
本视频基于Xilinx公司的Artix-7FPGA器件以及各种丰富的入门和进阶外设,提供了一些典型的工程实例,帮助读者从FPGA基础知识、逻辑设计概念
本课程为“从零开始大战FPGA”系列课程的基础篇。课程通俗易懂、逻辑性强、示例丰富,课程中尤其强调在设计过程中对“时序”和“逻辑”的把控,以及硬件描述语言与硬件电路相对应的“
课程中首先会给大家讲解在企业中一般数字电路从算法到流片这整个过程中会涉及到哪些流程,都分别使用什么工具,以及其中每个流程都分别做了
@2003-2020 中国电子顶级开发网