Xilinx 发布 reVISIONTM堆栈--发布背景解析

热度55票  浏览1337次 【共0条评论】【我要评论 时间:2017年3月14日 09:09

reVISION:  将全可编程技术扩展至广泛的视觉导向机器学习应用

机器学习的应用正迅速地扩展至越来越多的终端市场,在用户端、在云端或者在那些基于端处理与基于云的数据分析相结合的混合解决方案中。面向云应用,赛灵思最近推出了可重配置加速堆栈201611月推出),目标直指包括机器学习推断在内的各种计算加速应用。 面向端应用,赛灵思现在宣布凭借Xilinx® reVISION 堆栈大幅扩展至广泛的视觉导向机器学习应用。 全新的reVISION堆栈能够支持更广泛的很少或没有硬件设计专业知识的嵌入式软件和系统工程师,使其也能利用赛灵思的技术更轻松、更快速地开发视觉导向的机器学习应用。


 

1 赛灵思扩大机器学习应用从端到云的部署 

广泛的赛灵思视觉和机器学习应用

如图2 所示, 放眼全球,赛灵思已经成为众多企业构建先进嵌入式视觉系统的最佳选择。 截至今天,全球已经有23 家汽车制造商在 85 款不同车型的  ADAS  系统中部署了赛灵思先进的嵌入式视觉系统,另外还有数百家嵌入式视觉客户在其他数千种应用中也部署了赛灵思的先进嵌入式视觉系统。其中至少有40家已经在开发或部署机器学习技术以大幅提高系统的智能。现在,大多数的赛灵思视觉客户包括具有很强硬件专长的工程师们,都看准了 Zynq® All Programmable SoC MPSoC 的应用

 

 

2:赛灵思嵌入式视觉行业成就

 

reVISION   的目标应用和使命

赛灵思正在为一些热门市场的应用提供支持。在这些市场中,差异化至关重要,系统必须响应迅速,最新算法和传感器必须能够被快速部署。这些应用包括专业消费类应用、汽车、工业、医疗、航空航天、军用以及高端前沿消费者应用。这些应用通常不包括部署在差异化较低的“够用就好或者发展成熟的技术之上的非常大批量的消费类应用或者主流商品化应用在。

 

 

如图 3 所示,众多的传统嵌入式视觉应用通过采用机器视觉和传感器融合技术后都在发生巨变。

 

3. 从嵌入式视觉到视觉导向的自主系统

下一代应用包括协作机器人、具有感应和躲避功能的无人机、增强现实、自动驾驶汽车、自动化监视和医疗诊断等。这些系统通常具有三大使命:

 

4:下一代视觉导向系统的应用使命

系1.系统不仅要会思考,而且还能对情境立即做出“响应”。这就要求一个从感应到处理、分析、决策、通信和控制整个流程中更一致的视图。同时还要高效实施、部署最新机器学习技术,满足8位及更深层面的精确性要求。注意,针对机器学习训练优化的技术继续偏离对机器学习推断优化的技术。 赛灵思已经专门为推断技术优化了其全可编程器件系列。

2.      鉴于神经网络和相关算法的快速变化以及传感器的快速发展,必须实现灵活性,能通过软硬件的可重配置性升级系统。

3.      由于许多新系统都连接到了一起(物联网),因此需要既能与传统的已有设备通信,也能与未来推出的新设备通信,同时还要能够进行云端通信。赛灵思将此定义为任意互联。

  

5:赛灵思独特的应用优势

赛灵思器件可以独特地支持以上所有三大使命, 且比其它替代方案拥有显著的和可测量的优势。 通过高效的推断和控制,赛灵思实现了传感器的最快响应时间,支持最新的神经网络,算法和传感器的可重构性,并支持与传统或新机器、网络和云的任意连接。

 

      然而,赛灵思器件的这些优势原来只有那些拥有硬件或者RTL 设计专长的专业用户才能受益,对于更广泛的应用和支持使用行业标准库和框架进行软件定义编程,还存在巨大的障碍。 reVISION堆栈的诞生, 解决了这个通往广泛应用的障碍。

6:广泛应用的障碍

对本篇资讯内容的质量打分:
当前平均分:0.03 (29次打分)
【已经有26人表态】
4票
感动
5票
路过
1票
高兴
2票
难过
2票
搞笑
1票
愤怒
5票
无聊
6票
同情
上一篇 下一篇
查看全部回复【已有0位网友发表了看法】