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FPGAs are typically associated with vast areas of
programmable logic, high I/O pin count, and large
fixed-point DSP arrays. FPGAs are not as well
known for their floating-point processing
capabilities, which are, in fact, quite impressive.
Floating-point operators are mapped through a
combination of programmable logic (LUT) and DSP
processing elements (DSP slices). 

A typical floating-point benchmark, large matrix
multiplication, is described in this white paper to
showcase a user-friendly C-to-Gate technology that
can propel Xilinx Virtex®-7 FPGAs into TeraFLOPS
territory, using powerful and flexible high level
synthesis (HLS) tools.

This white paper provides an overview of fixed- and
floating-point DSP coding techniques, ranging from
RTL to the Xilinx portfolio of IP and tools. It also
describes advances with High-Level Synthesis (HLS)
tools, like AutoPilot, how FPGA designs can benefit
from coding in a “natural language” like C or C++,
and how easily FPGAs can be programmed by a
large community of software programmers.
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Traditional DSP Design with Xilinx FPGAs:
RTL Language for Fixed- and Floating-Point DSP

A very common operation in DSP is the multiply-accumulate (MACC):

a <= a + (b x c)

where b and c are the input vectors and a is the internal accumulator. See Figure 1. 
Xilinx FPGAs support this hardware operation for fixed-point arithmetic, but they 
also support floating-point via dedicated libraries.

The traditional approach to coding an FPGA is to create RTL code in a text format and 
insert the source files in a design project within the Xilinx design environment 
(ISE® Design Suite). In this approach, customers will need to be proficient in Verilog 
or VHDL and have a solid understanding of FPGA block architecture. The hardware 
designer can achieve a very fine level of control of the hardware design at the gate 
level and is responsible for the whole data flow and pipeline management, including 
the pipelines balancing, whereas HLS FPGA tools can tremendously assist the 
designer with pipeline management. However, the DSP block detailed architecture, as 
shown in Figure 1, can be overwhelming to software programmers, which is why 
Xilinx offers powerful DSP development software tools and DSP libraries. The most 
recent tools, like HLS, which process high-level language like C and C++, increase the 
level of hardware abstraction and make FPGAs more accessible to software designers.

As an example of pipeline management, a fixed-point project can be defined, shown 
schematically in Figure 1. This example is a simple alpha-blending algorithm merging 
two color video streams into one with an 8-bit per color component. The alpha 
coefficient is also coded over 8 bits. One DSP slice is used for each color component, so 
three slices are required to process 24-bit colors.

X-Ref Target - Figure 1

Figure 1: DSP48A1 Slice Configured for Alpha-Blending
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Two 8-bit vectors represent the two video streams, one pixel at a time, and are fed to 
three of the DSP slice pipelines (B, C, and D). The Alpha coefficient is fed to the A 
pipeline, and the blended video stream is coming out of the P pipeline. For example, 
the matching and summarized code for the direct RTL implementation (VHDL), 
optimized for the FPGA DSP slice in Spartan®-6 FPGAs (DSP48A1) is:

entity AlphaBlender is 
  port(
    clk       : in  std_logic;
    ce        : in  std_logic;
    alpha     : in  std_logic_vector(7 downto 0);
    pixel1    : in  std_logic_vector(7 downto 0);
    pixel2    : in  std_logic_vector(7 downto 0);
    pixelout  : out std_logic_vector(7 downto 0)
    );
end AlphaBlender;

begin

  bin <= ext(pixel1 & AlphaPadding, DspDataWidth);
  cin <= ext(pixel1 & AlphaPadding & AlphaPadding, DspCascadeWidth);
  din <= ext(pixel2 & AlphaPadding, DspDataWidth);
  ain <= ext(alpha, DspDataWidth);
  
  addmultadd : process (clk)
  begin
    if rising_edge(clk) then
        ain_r1   <= ain;            
        ain_r2   <= ain_r1;            
        bin_r    <= bin;            
        din_r    <= din;            
        cin_r1   <= cin;   
        cin_r2   <= cin_r1;   
        cin_r3   <= cin;   
        preadd_r <= din_r - bin_r;  
        mult_r   <= preadd_r * ain_r2; 
        sum_r    <= mult_r + cin_r3;   
    end if;
  end process addmultadd;

  pixelout <= sum_r(2*AlphaWidth+PixelWidth-1 downto 2*AlphaWidth);

end behavioral;

RTL design provides a high degree of control of the hardware implementation; the 
maximum level of performance can be obtained when the designer is familiar with the 
processing unit architecture. To optimize the learning curve, Xilinx started to unify the 
DSP slice architectures in Spartan-6 and Virtex-6 families and achieved a full 
unification in the 7 series FPGAs. This unification also allows a seamless device 
migration. To maximize the throughput of the DSP slice, the designer must design 
according to the pipeline structures of the DSP slice and must virtually rebuild that 
structure in RTL. In other words, the RTL designer is in charge of the pipeline 
balancing whereas HLS FPGA tools, like AutoPilot from AutoESL Design 
Technologies, can assist with pipelining.

Xilinx delivers basic floating-point cores through CORE Generator™ software. These 
cores can be instantiated with a variety of different parameters, as shown in Figure 2 
and Figure 3. Typically, these cores are more heavily pipelined than fixed-point 
arithmetic to achieve high clock speeds.
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X-Ref Target - Figure 2

Figure 2: CORE Generator Software Floating-Point Interface
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Model Based Design Flow for Floating-Point:
Xilinx System Generator

After the various FP operators (FPO) are created, the designer assembles them and 
creates the top level of the DSP engine with a Xilinx tool called System Generator.

With System Generator for DSP, floating-point IP such as the Xilinx floating-point 
operator can be brought into System Generator using the black box HDL import flow. 
The System Generator black box block allows VHDL, Verilog, and EDIF to be brought 
into a design. The black box block behaves like other System Generator blocks; it is 
wired into the design, participates in simulations, and is compiled into hardware. 
When System Generator compiles a black box block, it automatically wires the 
imported module and associated files into the surrounding netlist. System Generator 
simulates black boxes by automatically launching an HDL simulator, generating 
additional HDL as needed (analogous to an HDL testbench), compiling HDL, 
scheduling simulation events, and handling the exchange of data between Simulink® 
software and the HDL simulator. 

This is called HDL co-simulation. Black box HDL can be co-simulated with Simulink 
software, a MathWorks, Inc. tool, using the System Generator interface to either 
ModelSim (simulation software from Model Technology, Inc.) or the ISE Simulator.

As a design example, the following algorithm represents the test example for a 4 x 4 FP 
Matrix Multiplication (shown in Equation 1). If R(i, j), also called a dot product, is the 
result matrix and M and N are the matrixes to multiply, any component of the R matrix 
should be processed this way:

Equation 1

X-Ref Target - Figure 3

Figure 3: CORE Generator Software Floating-Point Interface — Configuration of the FP Operator
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Figure 4 shows a design of a 4 x 4 matrix multiplication for a given matrix component, 
after being captured in Simulink.

Figure 4 includes the operators to compute one element of the result matrix (i.e, one 
dot product).

After this elementary matrix operator is built, it can be:

• Built 16 times over to represent the whole matrix multiplication, producing the 
most parallel implementation and the lowest latency, or

• Scheduled 16 times over for a sequential implementation, producing the lowest 
FPGA resource utilization

Other trade-offs can be found between latency and resource utilization, although it is 
the responsibility of the DSP designer to implement any design mitigation.

X-Ref Target - Figure 4

Figure 4: 4 x 4 Matrix Multiplication in Simulink
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Based on Equation 1, a standard 4x4 multiplication requires only three additions and 
four multiplications per dot product, so only seven elementary FP operators are 
required (three adders and four multipliers). 

Note: The implementation in Figure 4 shows 16 operators because nine additional operators 
are needed to convert a fixed-point test vector to a FP test vector. This is needed only for 
simulation purposes in Simulink with ISE Design Suite 12.x.

This coding technique allows the design of fairly simple FP projects with a relatively 
flat architecture. The MATLAB/Simulink environment is efficient; the DSP designer 
can reuse vast libraries of components, processors, and generators. It allows the 
exploration of several implementations in parallel and, in the case of this FP exercise, 
allows comparing the performance of algorithms coded in floating point against their 
counterparts coded in fixed point.

This design approach uses a model-based methodology with pre-existing 
floating-point operators. It allows only several levels of architectural complexity and 
remains a manual entry process. For larger or more complex projects with deeper 
hierarchies, the designer might want to use higher-level tools, like HLS tools, that offer 
coding languages like C, C++, or SystemC.

High-Level Synthesis Tools Suitable for FP Projects:
Natural Language

To take advantage of the vast DSP resources that FPGAs offer and accelerate the 
design process for larger FP applications, HLS tools can be used for design entry and 
verification. FP operations are typically defined in C/C++, and modern HLS tools 
offer a powerful way of compiling that C code into RTL. HLS tool performance has 
expanded tremendously in recent years with product offerings from Synopsys, 
AutoESL Design Technologies, Mentor Graphics, and many other vendors. The ability 
of HLS tools to capture and manage large or complex designs becomes more 
important as overall design complexity and available FPGA resources continue to 
increase. 

Some key benefits of HLS are:

• C/C++ coding and simulation environment
• Shorter development times due to ability to iterate and test design in C
• Ability to rearchitect RTL design by changing implementation parameters
• Ability to retarget design to multiple Xilinx FPGA families
• Maintainability of design for future Xilinx FPGA products
• Ability to scale the problem or algorithm to any size due to a highly 

parameterized coding capability. 

To illustrate this point, the process of designing a larger 16x16 FP matrix multiplier can 
be examined. A description of this algorithm in C++ language is shown this code 
example:

http://www.xilinx.com
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template<int A_ROWS, int A_COLS, int B_COLS >
void matrix_multiply (float a_in[A_ROWS][A_COLS],

      float b_in[A_COLS][B_COLS],
      float c_out[A_ROWS][B_COLS])

{
int index_a, index_b, index_c;
float tmp_a, tmp_b, tmp_mult, sum_mult;

// matrix multiplication of a A*B matrix
for (index_a = 0; index_a < A_ROWS; index_a++) {
for (index_b = 0; index_b < B_COLS; index_b++) {
sum_mult = 0.0f;
for (index_c = 0; index_c < A_COLS; index_c++) {
tmp_a = a_in[index_a][index_c];
tmp_b = b_in[index_c][index_b];

tmp_mult = tmp_a * tmp_b;

sum_mult += tmp_mult;
}
c_out[index_a][index_b] = sum_mult;

}
}

}

This design can be tested and debugged in C and verified using a C testbench. This 
same design source can then be pushed through an HLS tool (such as AutoPilot) to 
generate an RTL implementation in minutes. The result of this initial design that 
targets a Virtex®-6 XC6VLX240T-FF1156-3 FPGA is shown in Table 1.

At this point, the designer can optimize this design and reduce the latency of the 
function further. This is done by examining the C code and inserting directives for 
controlling how different parts of the design are implemented. In particular, 
controlling the behavior of loops has a direct effect on the design’s performance. 
Adding a simple loop initiation interval directive (#pragma) in the innermost loop, 
for example, can reduce the overall latency by directing the inner loop to run in a 
pipelined fashion rather than serially. Following is the code with the pragma directive 
inserted in the correct location:

Table 1: Initial Results for 16x16 Multiply

Initial Design Units

Latency 103,200 cycles

DSPs 3 -

LUTs 650 -

Slices 190 -

FMAX 551 MHz

Throughput 187.3 µs

FPO core(1) 1 -

Notes: 
1. Number of FPO cores used per each matrix multiplication

http://www.xilinx.com
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template<int A_ROWS, int A_COLS, int B_COLS >
void matrix_multiply (float a_in[A_ROWS][A_COLS],

      float b_in[A_COLS][B_COLS],
      float c_out[A_ROWS][B_COLS])

{
int index_a, index_b, index_c;
float tmp_a, tmp_b, tmp_mult, sum_mult;

// matrix multiplication of a A*B matrix
for (index_a = 0; index_a < A_ROWS; index_a++) {
for (index_b = 0; index_b < B_COLS; index_b++) {
sum_mult = 0.0f;
for (index_c = 0; index_c < A_COLS; index_c++) {

#pragma AP PIPELINE II=14
tmp_a = a_in[index_a][index_c];
tmp_b = b_in[index_c][index_b];

tmp_mult = tmp_a * tmp_b;

sum_mult += tmp_mult;
}
c_out[index_a][index_b] = sum_mult;

}
}

}

Tailoring the Design to Optimize FPGA Density
"AP PIPELINE II" of 14, which specifies the initiation interval (II) in this new pragma 
directive, reduces the latency to nearly half that of the initial design at the cost of 
increased resource utilization (most notably, a larger number of flip-flops to 
implement the pipeline). 

Additional optimizations can be made to further refine the design. For example, 
moving the pipeline directive from the innermost loop to the one above it effectively 
unrolls the inner loop and pipelines it. This move reduces the latency dramatically by 
a factor of 26 at the cost of area. Still more optimizations can be made by controlling 
the partitioning of the memories used to store/access the input matrices, allowing 
them to be accessed in parallel and moving the addition operation to its own separate 
parallel loop. 

The results of these various optimizations are shown in Table 2.

http://www.xilinx.com
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The iteration time for each of these designs is in the order of minutes (compared to 
hours potentially caused by RTL code changes), and each design generates a 
completely unique organization of pipelines and control logic to optimize for a target 
frequency and latency requirement. This illustrates the power of HLS tools in design 
exploration and verification.

A typical design flow involves the following steps:

1. The application functionality is captured in C and its behavior is verified through 
C simulations.

2. The design is compiled and implemented using the HLS tool, and the latency 
results are reviewed.

3. The design is optimized via directives and is recompiled, and the results are 
reviewed. This step is iterated until results are achieved or no further optimization 
is feasible.

4. Optionally, the code can be rearchitected in C and verified for correctness in C. The 
design needs to be recompiled, and the latency results are reviewed.

5. Step 3 or Step 4 should be iterated until results are achieved or no further 
optimization is feasible.

6. The final generated RTL is integrated into the FPGA design.

Compiling the design might also involve running the FPGA implementation tools to 
ensure that the estimated performance from the HLS tool matches that of the FPGA.

For the majority of DSP designs, HLS design is a powerful way to describe, test, and 
implement a design on an FPGA, with design results rivaling those of hand-coded 
RTL in a fraction of the development time.

Performance to Expect in Upcoming 7 Series FPGAs
This section includes an overview of FP processing capability of Xilinx FPGAs while 
implementing the HLS design flow and reports the benchmark data of a real-valued 
floating-point operator (matrix multiplication of two 16 x 16 matrixes) processing data 
in single-precision IEEE floating point (32-bit).

Table 2: Final Optimization Results for 16 x 16 FP Multiply

 ISE Design 
Suite 12.3 Initial II = 14(1) II = 8(2)

Parallel 
Units

II = 4(2) II = 2(2) II = 1(2)

Latency 103,200 61,185 2,279 1,094 581 325 cycles

DSPs 3 3 6 12 24 48 -

LUTs 650 693 3,223 4,026 6,166 9,588 -

Slices 190 259 1,182 1,535 2,101 3,536 -

FMAX 551 516 403 451 416 362 MHz

Throughput 187.3 118.6 5.7 2.4 1.4 0.9 µs

FPO Core 1 1 2 4 8 16 -

Notes: 
1. Refers to the innermost loop.
2. Refers to the loop above the innermost loop.
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The first two columns are showcasing two existing Virtex-6 devices; the next two 
columns are showcasing the two largest devices of the upcoming Virtex-7 FPGA 
family. For each target, the place and route tools were set up for the fastest speed grade 
(-3) and DSP resources were maximized.

The performance data in GFlops are peak numbers and make the assumption that data 
pipes are properly designed to feed a sustained data stream to the FP operators.

Table 3 shows the benchmark results after being synthesized with AutoPilot and IDS 
12.4.
One 16 x 16 floating-point matrix multiplication equates to 7,936 single-precision 
FLOPS.
II = 1 (AutoESL setup),
 Design Suite 12.4, 
AutoPilot 2010.a.3

In this example and benchmark based on a single-precision 16x16 matrix 
multiplication synthesized from C, the performance in the largest Virtex-6 device 
exceeds 0.5 TeraFLOPs, and in the largest Virtex-7 device exceeds 1.1 TeraFLOPs.

Conclusion
Various methods of designing DSP projects in both fixed point and floating point have 
been described. This underscores the great flexibility of FPGAs to address the multiple 
precisions needed for DSP, as well as the ability to address several data 
representations, whether fixed at 18 or 25 bits, or floating from 32 to 64 bits.

Coding methods are also flexible and include low-level operator instantiation in RTL, 
a block design approach with IP generation tools, high-level language synthesis in C 
and SystemC, and even object-oriented programming with C++.

The HLS method has become an effective approach to coding large DSP projects in a 
“natural language” like C. This should appeal to a class of software designers more 
accustomed to high-level languages like C/C++, but without sacrificing the 

Table 3: Summary of Features in Virtex-6 and Virtex-7 Devices, Maximum Performance

Virtex-6 Family Virtex-7 Family

Specific Device XC6VLX240T XC6VSX475T XC7V2000T XC7VX850T

Speed Grade 
(Software 12.4) -3 -3 -3 -3

DSP slice count 768 2,016 2,160 3,960

FPO frequency (MHz) 450 450 500 500

DSP slice usage/matrix 
multiplication 48 48 48 48

Matrix multiplication 
per device 16 42 45 82

Matrix multiplication 
frequency (MHz) 1.59 1.59 1.76 1.76

Performance (GFLOP)(1) 201 527 628 1,145

Notes: 
1. Performance is computed by multiplying the number of FLOPS per matrix multiplication, times the number 

of matrix multiplication per device, times the frequency of the matrix multiplication.
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performance levels that were obtained with RTL languages. A tool like Auto Pilot 
allows a DSP designer to quickly explore a range of automatically optimized DSP 
architectures.

The simple floating-point example based on a matrix multiplication shows that, as an 
HLS project, it enables a peak theoretical performance of 0.5 TeraFLOPs (Single 
Precision) for the largest Virtex-6 FPGA, and beyond 1.0 TeraFLOPs (Single Precision) 
for the largest Virtex-7 FPGA. It also offers fast design and optimization cycles, 
providing a shorter time to market.

In summary, DSP designers using Xilinx FPGAs and HLS tools can achieve 
outstanding floating-point performance levels with greater ease and efficiency 
through the use of familiar high-level language coding and tools.

Additional Information
1. Product Selection Guide

2. UG369, Virtex-6 FPGA DSP48E1 Slice User Guide

3. DS335, Floating-Point Operator Data Sheet

4. UG640, System Generator for DSP User Guide
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