
WP409 (v1.0) October 31, 2011 www.xilinx.com 1

© Copyright 2011 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other designated brands included herein are trademarks of Xilinx in the United
States and other countries. All other trademarks are the property of their respective owners.

Floating-point arithmetic, long the realm of
general-purpose CPUs, DSPs, and graphics
processing units (GPUs) is seeing growing use in
FPGAs. This trend is driven by a host of new
applications in medical imaging, wireless, and
defense that require large dynamic range as well as
by a strong need to simplify the design process.

Xilinx 7 series FPGAs can deliver up to 1.33 teraflops
of single-precision floating-point performance on
one device, driving the demand for an easy-to-use
design flow that delivers hand-crafted results. Xilinx
System Generator for DSP™ now meets this demand
by supporting the design and implementation of
floating-point algorithms from within the
MathWorks Simulink modeling environment.
System Generator also has the flexibility of
optimizing an implementation that is bit- and
cycle-accurate to the original model.

White Paper: 7 Series FPGAs

WP409 (v1.0) October 31, 2011

High-Level Implementation of
Bit- and Cycle-Accurate

Floating-Point DSP Algorithms
with Xilinx FPGAs

By: Tim Vanevenhoven

http://www.xilinx.com

2 www.xilinx.com WP409 (v1.0) October 31, 2011

The Need for Floating-Point Implementations

The Need for Floating-Point Implementations
Xilinx FPGAs have long been used to implement fixed-point DSP and video
algorithms in hardware. The flexibility of programmable logic allows fixed-point
arithmetic to use custom bit widths that are not bound to the 8-, 16-, or 32-bit
boundaries of a fixed-point processor. Fixed-point bit widths can grow as needed to
accommodate applications that require larger dynamic range. However, as the
dynamic range needs grow, a fixed-point implementation becomes increasingly
expensive.

7 series FPGAs include an optimized DSP block called the DSP48E1 slice that includes
a 25x18 multiplier (Figure 1). Five high-speed interconnects connect two DSP48E1
slices into a single DSP48E1 tile that supports a single-precision floating-point
multiply with no loss of FMAX performance. The Virtex®-7 family, the largest of the
7 series FPGAs, includes 1800 DSP48E1 tiles (3600 DSP48E1 slices) and can deliver up
to 1.33 teraflops of single-precision DSP performance on one device at a fraction of the
cost and power of GPUs. This makes Virtex-7 FPGAs an attractive choice for cost- and
power-sensitive applications that require floating-point hardware.

Engineers and scientists developing new algorithms look for efficient ways to
implement floating-point algorithms in FPGAs without using hardware description
languages like VHDL or Verilog. The design flow for fixed-point implementation is
well known, but there is a gap in floating-point design flows that require abstraction
along with the capability to fine tune an implementation to meet challenging system
requirements. Hardware description languages provide an efficient design flow for
fixed-point arithmetic because synthesis tools can directly produce efficient
fixed-point hardware for arithmetic operators such as * (multiplication) and +
(addition). Floating-point hardware design, however, relies heavily on the use of
instantiated IP cores such as the Xilinx floating-point operator (FPO), which makes the
use of HDL cumbersome and simulation difficult.

X-Ref Target - Figure 1

Figure 1: DSP48E1 Tile and DSP48E1 Slice

DSP48E1 Tile

In
te

rc
on

ne
ct

WP409_01_102711

B

A
Pre-Adder

25x18
48-Bit

Accumulator

Pattern
Detector

P
+/-

D

C

X

=

+
-

DSP48E1
Slice

DSP48E1
Slice

http://www.xilinx.com

Precision Considerations

WP409 (v1.0) October 31, 2011 www.xilinx.com 3

Precision Considerations
While the IEEE 754 standard specifies three basic floating-point formats, this white
paper touches on two of them—single and double precision. Single precision uses a
total of 32 bits, including one sign bit, eight exponent bits, and 23 fractional bits.
Double precision uses a total of 64 bits, including one sign bit, 11 exponent bits, and 52
fractional bits. It is appropriate to only support the IEEE 754 single and double
precision bit widths for CPU, DSP, and GPU processors that include dedicated
floating-point instruction sets. Conversely, the flexibility of programmable logic
allows for hardware savings by customizing the size of the floating-point exponent or
mantissa fields to the exact precision requirements for the application. For example, a
particular wireless system might only need 28 fractional bits to maintain sufficient
fidelity. With System Generator, this can be specified on a per-block basis and quickly
simulated in Simulink to observe the effects (Figure 2).

The resulting design provides sufficient numeric accuracy while requiring less logic
and power than a competing implementation in which the designer would be forced
to use the full 64-bit IEEE 754 double precision.

Automatic Data Type Propagation
System Generator further simplifies the design flow by supporting automatic
floating-point data type propagation. With floating-point operations, the result of an
operation is stored using the same floating-point precision. There is no concept of bit
growth as found in fixed-point operations. The exponent field in the operation
manages the need for increased dynamic range. If the user specifies custom
floating-point bit widths for the exponent and mantissa, this data type is automatically
propagated throughout the design (Figure 3).

X-Ref Target - Figure 2

Figure 2: System Generator Floating-Point Precision Options

WP409_02_101911

X-Ref Target - Figure 3

Figure 3: Floating-Point Data Type Propagation in System Generator

Random
Number

Sine Wave

Gateway In

Gateway In1

In

Out

In

Gateway In2

Gateway In3

Mult

Mult1

AddSub

Gateway Out
ScopeIn

In

Random
Number1

double

double

double

XFloat_10_28

XFloat_10_28

WP409_03_101911

XFloat_10_28

XFloat_10_28

a
z-3

b
a x b

a

b
a + b

a
z-3

b
a x b

XFloat_10_28

XFloat_10_28

XFloat_10_28

double

Repeating
Sequence

double

http://www.xilinx.com

4 www.xilinx.com WP409 (v1.0) October 31, 2011

Bit- and Cycle-Accurate Verification

The System Generator floating-point library contains over 30 blocks. For blocks that
support both floating- and fixed-point data, the implementation is determined by the
data type of the block’s inputs. This makes the design flow simple and easy to
understand because there is no need to swap out blocks when switching some or all of
the design between a fixed- or floating-point implementation during the design cycle.

Bit- and Cycle-Accurate Verification
One of the challenges with alternative floating-point design flows is verification. Even
when only using single- and double-precision data types, the algorithmic simulation
and implementation in hardware do not always match. This could be because the
algorithmic simulation might be using a higher internal precision or because the
normalization logic is not the same as was used in the simulation. With the System
Generator design flow, bit accuracy is not a concern. For all designs, whether
containing single, double, or custom precision data, the implementation is bit- and
cycle-accurate to the original design source. Accordingly, when implementing a
design that leverages custom precision operators and datapaths, the implementation
is bit- and cycle-accurate to the original simulation model. In addition, the hardware
co-simulation capabilities available in System Generator also fully support
floating-point implementations for accelerated verification in hardware.

Conclusion
Up until recently, most algorithms implemented in FPGAs were fixed-point. Current
trends in system requirements and available FPGAs are causing floating-point
implementations to become more common. The IEEE 754 standard specifies data
types that are sufficient for fixed-architecture processors but limit the flexibility
available in FPGAs. Using only these data types unnecessarily restricts designers from
optimizing their floating-point FPGA implementation.

The high-level floating-point design flow available today with System Generator
provides users a powerful environment that allows the creation of custom precision
datapaths for optimal area and power. Unlike alternative FPGA design flows, the
floating-point design flow also generates an implementation that is bit- and
cycle-accurate to the original simulation model. To learn more about this design flow,
go to www.xilinx.com/system_generator.

Revision History
The following table shows the revision history for this document:

Date Version Description of Revisions

10/31/11 1.0 Initial Xilinx release.

www.xilinx.com/system_generator
http://www.xilinx.com

Notice of Disclaimer

WP409 (v1.0) October 31, 2011 www.xilinx.com 5

Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use
of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available
“AS IS” and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS,
EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
(2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory
of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with,
the Materials (including your use of the Materials), including for any direct, indirect, special, incidental,
or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably
foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to
correct any errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior
written consent. Certain products are subject to the terms and conditions of the Limited Warranties which
can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be
fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability
for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

http://www.xilinx.com
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com/warranty.htm

	High-Level Implementation of Bit- and Cycle-Accurate Floating-Point DSP Algorithms with Xilinx FPGAs
	The Need for Floating-Point Implementations
	Precision Considerations
	Automatic Data Type Propagation
	Bit- and Cycle-Accurate Verification
	Conclusion
	Revision History
	Notice of Disclaimer

