
XAPP583 (v1.0) May 31, 2012 www.xilinx.com 1

© Copyright 2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other designated brands included herein are trademarks of Xilinx in the United
States and other countries. AMBA and ARM are registered trademarks of ARM in the EU and other countries. All other trademarks are the property of their respective owners.

Summary With embedded systems becoming more popular, many designers want to reduce their
component count and increase flexibility. To accomplish both of these goals, a microprocessor
already available in the system can be used to configure an FPGA. This application note
provides a thorough discussion of FPGA configuration via a microprocessor, covering the Xilinx
7 series FPGAs. C code is included to illustrate an example application using either Slave
Serial or Slave SelectMAP mode. The included example configures a Kintex™-7 XC7K325T
device from a MicroBlaze™ processor.

System
Overview

Today’s systems demand greater functionality in less space and at reduced cost. In addition,
each generation of Xilinx FPGAs delivers higher performance and increased capabilities.
Although Xilinx FPGAs support direct configuration from third-party flash, an embedded
processor-based configuration solution can allow for advanced FPGA configuration
applications and reduce board real estate requirements, assuming that an external, embedded
processor with sufficient memory is already a prerequisite for the system. This technique
requires that the processor be operational before FPGA functionality is required.

This application note describes a technique for configuring an FPGA from an embedded
processor. The Xilinx design tools generate the FPGA configuration data, also known as a
configuration bitstream. To configure the FPGA, the processor uses the described technique to
load the generated bitstream into the FPGA. A system diagram is shown in Figure 1.

A microprocessor whose primary purpose is to perform other tasks can also be used to
coordinate the loading of configuration data into a Xilinx FPGA. A processor provides greater
flexibility, for example, in choosing which of multiple configuration files to program into the
FPGA.

Application Note: 7 Series FPGAs

XAPP583 (v1.0) May 31, 2012

Using a Microprocessor to Configure
7 Series FPGAs via Slave Serial or Slave
SelectMAP Mode
Author: Matt Nielson

X-Ref Target - Figure 1

Figure 1: System Diagram

Memory

7 Series
FPGA

7 Series
Bitstream

Processor

X583_01_040412

http://www.xilinx.com

Configuration Background

XAPP583 (v1.0) May 31, 2012 www.xilinx.com 2

Configuration
Background

Microprocessor configuration of 7 series FPGAs can be accomplished in either Slave Serial or
Slave SelectMAP mode. There are several similarities between these two modes. Most
importantly, the basic configuration sequence is identical for both modes.

The JTAG configuration interface can also be controlled via a microprocessor, but that interface
is not included in this application note.

Basic Configuration Sequence

The basic configuration sequence is shown in Figure 2.

X-Ref Target - Figure 2

Figure 2: Basic Configuration Sequence

1. Power-up or
Configuration

Reset

2. Device
Initialization

Power-up
Pulse

PROGRAM_B

INIT_B = Low

INIT_B = High

3. Configuration
(Bitstream)

Load

Special Startup
Conditions

Compensation

[Optional]
Reconfigure
FPGA

Error

INIT_B = Low

Configuration
Complete

FAIL:
DONE = Low

Timeout

SUCCESS:
DONE = High

INIT_B = ?

INIT_B = High

X583_02_040412

http://www.xilinx.com

Configuration Background

XAPP583 (v1.0) May 31, 2012 www.xilinx.com 3

1. Power-up or configuration reset: The configuration sequence begins with power-up or
configuration reset. Power-up is when power is first applied to the FPGA. Configuration
reset occurs when the PROGRAM_B pin is asserted.

2. Device initialization: Power-up or configuration reset triggers a configuration memory
initialization process. During configuration initialization, the FPGA drives the INIT_B pin
Low, resets the internal configuration state machines, and clears the configuration memory.
At the completion of the initialization process, the FPGA releases the INIT_B pin to a
high-impedance state and waits in this state until the INIT_B pin goes High.

When the INIT_B pin is released to a high-impedance state, an external resistor is required
to pull the INIT_B signal High. When INIT_B goes High, the FPGA samples its
configuration mode M[2:0] pins. The mode pins determine the configuration mode for the
remaining steps of the FPGA configuration flow. When M[2:0] = 111, the FPGA is set to the
Slave Serial configuration mode. When M[2:0] = 110, the FPGA is set to the Slave
SelectMAP configuration mode. After sampling the mode pins, the FPGA is ready to
receive configuration data (also known as a configuration bitstream).

3. Configuration load: When the FPGA is in a slave configuration mode, an external
microprocessor can load the bitstream into the device during this step of the configuration
sequence. For Slave Serial mode, the bitstream is loaded through the FPGA D01_DIN pin,
one bit per each rising edge of CCLK. For Slave SelectMAP mode, data is loaded through
the FPGA D[31:00] pins on each rising edge of CCLK when the FPGA CSI_B and
RDWR_B pins are Low. See UG470, 7 Series FPGAs Configuration User Guide for the
bitstream bus width auto-detection pattern that determines whether 8, 16, or 32 bits are
loaded through the SelectMAP D[07:00], D[15:00], or D[31:00] pins, respectively, on each
rising edge of CCLK.

After the bitstream is loaded, the configuration sequence is complete.

Configuration Bitstream Details

The Xilinx design tools generate the FPGA configuration bitstream with all commands and data
that are necessary to check for a matching target device identifier, load the configuration
memory data, and start the FPGA design. See 7 Series FPGAs Configuration User Guide for
the details of the bitstream composition.

Generally, the processor code does not need to understand the composition of the bitstream.
However, a few key commands within the bitstream should be understood for correctly starting
the FPGA design, validating the processor configuration code, and debugging the processor
configuration code.

Sync Word

After a few pad bits and the bus width auto-detection pattern, at the beginning of the bitstream
is a 32-bit sync word (0xAA995566). The sync word bit order (or byte order) from the processor
to the FPGA is the most important signature for correct delivery of the bitstream to the FPGA.

Device Identification

A device ID check follows the sync word in the bitstream. This checks that the appropriate
device is receiving the bitstream. If the device ID check fails, the FPGA drives its INIT_B pin
Low to indicate a configuration error.

CRC Check

Near the end of the bitstream is a command that checks the internal configuration cyclic
redundancy check (CRC) against an expected value from the bitstream. If the device
recognizes the CRC check command and if the CRC does not match the expected value, the
FPGA drives its INIT_B pin Low to indicate a configuration error.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf

Configuration Background

XAPP583 (v1.0) May 31, 2012 www.xilinx.com 4

Start-Up

After the device receives all the configuration data from the bitstream and passes the CRC
check, a start-up command near the end of the bitstream initiates a start-up sequence for the
loaded design. See UG470, 7 Series FPGAs Configuration User Guide for the details of the
start-up sequence. During the start-up sequence, the FPGA releases its DONE pin to a
high-impedance state. The FPGA waits at that point in the start-up sequence until the DONE
pin goes High. A strong external pull-up resistor (or the BitGen DriveDONE option) is required
to bring the DONE pin High. The start-up sequence completes when it reaches the end of
start-up (EOS) state.

Note: The DONE signal is released before EOS. Thus, the processor code must not stop delivering the
bitstream or stop delivering CCLK pulses when DONE transitions to High.

The processor code must deliver all bits/words of the bitstream to the FPGA. Typically, the
start-up sequence completes to EOS before the last bit of the bitstream is delivered to the
FPGA.

Special Start-Up Conditions

A few BitGen options affect FPGA start-up by potentially extending the start-up sequence
beyond the end of the delivered bitstream. For a few of these options, additional CCLK pulses
must be issued to the FPGA after the delivery of a configuration bitstream. Example BitGen
options that affect start-up include LCK_CYCLE or MATCH_CYCLE.

To cover all possible bitstream start-up options, the processor code must be written to:

1. Load all the bitstream data.

2. Continue to apply CCLK cycles (while the data bits on D01_DIN or D[31:00] are all ones)
until DONE is asserted High.

3. Apply eight additional CCLK cycles after DONE is asserted High to ensure completion of
the FPGA start-up sequence.

If the LCK_CYCLE or MATCH_CYCLE are selected, the above sequence works when the
LCK_CYCLE or MATCH_CYCLE are set to a value less than the DONE_CYCLE. This assures
that DONE toggles after the start-up extending events occur. See 7 Series FPGAs
Configuration User Guide and the BitGen section of UG628, Command Line Tools User Guide
within the ISE® Design Suite manuals for additional BitGen options and details.

Slave Serial Configuration

After INIT_B goes High, one bit of Slave Serial configuration data (presented on the D01_DIN
pin) is loaded into the configuration logic on each rising CCLK edge (refer to the appropriate
data sheet for setup and hold time specifications). Table 1 describes the pins used during Slave
Serial configuration.

Table 1: Slave Serial Pin Descriptions

Signal Name Direction Description

CCLK Input Configuration clock.

PROGRAM_B Input Active-Low reset to configuration logic.

INIT_B Input/Output Active-Low FPGA initialization pin. Indicates when the device is
ready to receive configuration data. Also indicates any
configuration errors. Can be held Low externally to delay
configuration.

DONE Input/Output Indicates configuration is complete. Can be held Low externally
to delay start-up.

M[2:0] Input Configuration mode selection.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/devref.pdf

Configuration Background

XAPP583 (v1.0) May 31, 2012 www.xilinx.com 5

Slave SelectMAP Configuration

Slave SelectMAP x8 data bus configuration data is loaded one byte at a time when presented
on the D[07:00] bus on each rising CCLK edge (see Data Formatting and Bit-Swapping, page 5
for more details). Table 2 lists the SelectMAP pins.

Two extra control signals are present for SelectMAP: CSI_B and RDWR_B. These signals must
both be asserted Low for a configuration byte to be transferred to the FPGA.

Note: The appropriate 7 series FPGA family data sheet must be referred to for setup and hold
specifications for all signals. The Slave SelectMAP configuration reference design for this application note
demonstrates configuration via only the 8 bit SelectMAP bus. The 7 series FPGA families also support 16-
or 32-bit-wide SelectMAP buses. With appropriate modifications and attention to bit ordering, the
principles of this reference design can be extended for the 16- or 32-bit-wide SelectMAP bus. See
UG470, 7 Series FPGAs Configuration User Guide for more details.

Data Formatting and Bit-Swapping

Because the configuration bitstream is loaded into memory connected to the processor, it must
be formatted in a way that the processor (or another device that programs the memory) can
use. To support various solutions, Xilinx tools can produce a number of different formats (see
Table 3). PROMGen, the PROM file generator, converts one or more bitstream files into a
PROM file. PROM files do not need to be used with a PROM. They can be stored anywhere and
delivered by any means.

D01_DIN Input Serial configuration data input.

DOUT Output Data output for serial daisy chains.

Table 2: Slave SelectMAP Pin Descriptions

Signal Name Direction Description

CCLK Input Configuration clock.

PROGRAM_B Input Active-Low reset to configuration logic.

INIT_B Input/Output

Active-Low FPGA initialization pin. Indicates when the device is
ready to receive configuration data. Also indicates any
configuration errors. Can be held Low externally to delay
configuration.

DONE Input/Output Indicates configuration is complete. Can be held Low externally to
delay start-up.

M[2:0] Input Configuration mode selection.

D[31:00] Input Parallel configuration data input.

CSI_B Input Active-Low chip select input.

RDWR_B Input Active-Low write select/read select.

Table 3: Xilinx Tool Formats

File Extension Description

.bit Binary file containing header information that should not be downloaded to the
FPGA

.rbt ASCII file containing a text header and ASCII 1s and 0s

.bin Binary file containing no header information

Table 1: Slave Serial Pin Descriptions (Cont’d)

Signal Name Direction Description

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf

Configuration Background

XAPP583 (v1.0) May 31, 2012 www.xilinx.com 6

Data ordering in Slave Serial configuration is very simple. Loading begins with the first bit in the
bitstream and continues one bit at a time until the end of the file is reached.

In contrast, data ordering for Slave SelectMAP configuration is slightly more complex. A
description of bit order for the 8-bit SelectMAP parallel bus is presented here. (See UG470,
7 Series FPGAs Configuration User Guide for the parallel bus bit order when using the
SelectMAP 16-bit and 32-bit bus widths.) Configuration data is loaded one byte at each rising
CCLK edge, and the MSB of each byte is presented on the D[00] pin, not the D[07] pin.
Because of this non-conventional ordering, presenting the data as is from the .bin file is
generally incorrect. The reason is that most processors interpret D[07] (not D[00]) as the most
significant bit in each byte. Connecting D[07] on the processor to the D[07] on the FPGA
SelectMAP data bus effectively loads the data backwards, resulting in unsuccessful
configuration. For this reason, the source data stream might need to be bit-swapped, with bits
in each byte in the data stream reversed. Figure 3 shows two bytes (0xABCD) being reversed.

Regardless of the orientation of the data, the MSB of the first byte of the data must be
transmitted to D[00]. However, in the bit-swapped version of the data, the bit that must be
transmitted to D[00] is the rightmost bit and, in the non-bit-swapped data, the leftmost bit. With
Xilinx tools, the .mcs files are always bit-swapped, and the .bit, .rbt, and .bin files are never
bit-swapped. Hexadecimal files can be produced bit-swapped according to the PROMGen tool
command line options.

Note: Whether or not data is bit-swapped is entirely processor- or application-dependent and is
generally only applicable for Slave SelectMAP applications. Non-bit-swapped data should be used for
Slave Serial downloads.

Errors and Troubleshooting

If configuration is not successful, the DONE pin does not go High after all the data is loaded.
There are many different reasons why this situation can occur. See Configuration Bitstream
Details, page 3 for possible sources of configuration error conditions.

.mcs ASCII PROM formats containing address as well as checksum information

.hex ASCII PROM format only containing data

X-Ref Target - Figure 3

Figure 3: Bit-Swapping Example for x8

Table 3: Xilinx Tool Formats (Cont’d)

File Extension Description

X583_03_032912

Hex:

Binary:

Bit-Swapped
Binary:

Bit-Swapped
Hex:

SelectMAP
Data Pin: D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7

1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1

1 1 0 1 0 1 0 1 1 0 1 1 0 0 1 1

D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0SelectMAP
Data Pin:

A B C D

D 5 B 3

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf

Configuration Background

XAPP583 (v1.0) May 31, 2012 www.xilinx.com 7

Common debugging methods include:

• Use a Xilinx configuration cable and JTAG configuration mode to verify the ability to
configure the FPGA with the bitstream and to read back device status information.

• Verify bit ordering and that bit-swapping is implemented, if necessary. See Sync Word,
page 3 for the primary bit order reference value.

• Verify that data sheet configuration timing requirements are met (see Figure 4).

• If DONE does not go High after delivery of the bitstream, check the INIT_B pin.

• If INIT_B is High:

- The FPGA might not have recognized the sync word at the beginning of the
bitstream. Check for proper delivery of the sync word.

- The FPGA might not have received the complete bitstream.

• If INIT_B is Low:

- The FPGA might have detected an error during configuration. Check that the
bitstream is for the correct target device.

Figure 4 shows the configuration timing requirements.

Figure 5 shows the serial configuration sequence.

In Figure 5, data is ignored before the sync word and after configuration is complete.

X-Ref Target - Figure 4

Figure 4: Configuration Timing Requirements

CCLK

D01_DIN

1/FSCCK

Set D01_DIN
Set CCLK = Low

Set CCLK = High

TSCCKL TSCCKH

TDCCK TCCKD

Symbols:
FSCCK = Maximum CCLK frequency
1/FSCCK = Minimum CCLK period
TSCCKL = Minimum CCLK low time
TSCCKH = Minimum CCLK high time
TDCCK = Minimum D01_DIN to CCLK rising-edge setup time
TCCKD = Minimum CCLK rising-edge to D01_DIN hold time

Sample Sequence for a CCLK Cycle:
1. Set CCLK = Low and set D01_DIN = new_value.
2. Delay for Minimum[Maximum[TSCCKL, TDCCK]].
3. Set CCLK = High.
4. Delay for Minimum[Maximum[TSCCKH, TCCKD]].
5. Repeat from step 1.

X583_04_050412

S
et

 D
01

_D
IN

X-Ref Target - Figure 5

Figure 5: Serial Configuration Clocking Sequence

PROGRAM_B

INIT_B

CCLK

DONE

D01_DIN

X583_05_053012

BIT 0 BIT 1 BIT n BIT n+1

TPROGRAM

http://www.xilinx.com

Hardware Implementation

XAPP583 (v1.0) May 31, 2012 www.xilinx.com 8

Figure 6 shows the SelectMAP configuration sequence.

Hardware
Implementation

Microprocessor

The reference design is based on the Xilinx MicroBlaze processor. For more information on the
MicroBlaze processor, see www.xilinx.com/microblaze.

Voltage Compatibility

The processor I/O needs to support a voltage that is compatible with the connected FPGA pins.
The configuration interfaces include the JTAG and dedicated configuration pins in bank 0, and
the dual-purpose pins in bank 14. To support the appropriate configuration interface voltage on
bank 0 and bank 14, the configuration bank voltage select pin (CFGBVS) must be set to High
or Low to set the configuration-related I/O for 3.3V/2.5V or 1.8V operation, respectively.
Typically, both banks receive the same VCCO voltage supply to ensure a consistent I/O voltage
interface for all of the configuration interface pins. In the Virtex-7 FPGA, bank 14 is a
high-performance bank limited to 1.8V or lower I/O standards. The design must meet the
voltage restrictions shown in Table 4.

Slave SelectMAP Hardware

This section discusses a reference design allowing a microprocessor to configure an FPGA
device via the Slave SelectMAP mode. SelectMAP configuration mode is the fastest

X-Ref Target - Figure 6

Figure 6: SelectMAP Configuration Clocking Sequence

PROGRAM_B

INIT_B

CCLK

CSI_B

RDWR_B

D[00:07]

X583_06_032912

Byte 0 Byte 1 Byte n

DONE

TPROGRAM

Table 4: Voltage Compatibility Requirements

Processor
GPIO

FPGA Bank VCCO
Requirement CFGBVS

FPGA Family Support
JTAG(1)

Bank 0 Bank 14 Artix™-7 Kintex-7 Virtex™-7

1.8V 1.8V 1.8V GND ∗ ∗ ∗ 1.8V

2.5V 2.5V 2.5V VCCO_0 (2.5V) ∗ ∗ N/A 2.5V

3.3V 3.3V 3.3V VCCO_0 (3.3V) ∗ ∗ N/A 3.3V

Notes:
1. The JTAG pins are in bank 0. Therefore, the JTAG signal voltage follows the voltage required for bank 0.

http://www.xilinx.com
www.xilinx.com/microblaze

Hardware Implementation

XAPP583 (v1.0) May 31, 2012 www.xilinx.com 9

configuration option. As shown in Figure 7, this design retrieves the FPGA configuration data
stored in external memory and directly configures the target FPGA.

Notes relevant to Figure 7:

1. Refer to Table 4, page 8 for voltage requirements.

The microcontroller in this reference design reads the FPGA configuration data from memory
one 32-bit word at a time. This design uses an 8-bit SelectMAP interface. A simple software
program handles sequencing the correct byte onto D[7:0] and asserting CCLK for each byte. It
also starts the configuration sequence by asserting PROGRAM_B and checks the DONE and
INIT_B signals for status or errors.

Slave SelectMAP Pseudocode

The pseudocode discussed in this section allows a microprocessor to:

• Read FPGA configuration data from memory

• Generate a CCLK

• Deliver byte-wide data to the FPGA

Within the Slave SelectMAP pseudocode, configuration happens in the main() and the
shift_word_out() functions. To begin configuration, the CSI_B, RDWR_B and PROGRAM_B
pins are set Low. Then the PROGRAM_B pin is asserted and then deasserted after waiting for
at least the required PROGRAM_B pulse width. The code then waits for INIT_B to be
deasserted if necessary.

X-Ref Target - Figure 7

Figure 7: Slave SelectMAP Configuration

PROGRAM_B

SELECT

CLOCK

PROGRAM_B

INIT_B

DONE

VCCINT

INIT_B

CSI_B

PROGRAM_B
DONE

GND

M1

M0

CCLK

D[31:0]

RDWR _B

VCCO_0

.

VCC

VCCO_0

GND

Configuration
Memory
Source

4.
7

kΩ

X583_07_040412

7 Series
FPGA

Microprocessor

D[31:0]

READ/WRITE

VCCO_0

4.
7

kΩ

33
0Ω

VCCAUX

VCCAUX

VCCO_0

VCCO_0
VCCO_14

VCCO_14
M2

See Configuration Voltage Requirements
 section for appropriate connection. (Note1) CFGBVS

http://www.xilinx.com

Hardware Implementation

XAPP583 (v1.0) May 31, 2012 www.xilinx.com 10

Note: See TPROGRAM in the target FPGA data sheet for specific requirements on the PROGRAM_B
pulse width. Asserting PROGRAM_B is not required if the FPGA has just completed power-up or is reset
through other means besides asserting PROGRAM_B.

After PROGRAM_B and INIT_B are deasserted, shift_word_out() is called for each 32-bit word
in the target FPGA bitstream stored in memory. This function deasserts CCLK, sequences the
next byte from the current word onto D[7:0], and then asserts CCLK.

After sending the target bitstream, main() waits for the target to assert DONE. To make sure
that any special start-up conditions have been met, another eight CCLK assertion and
deassertions are sent to the target.

Note: The following pseudocode represents a memory-mapped I/O structure such as in the MicroBlaze
processor. While the slave_selectmap.c source file in the reference design should be easily portable,
the user might need to modify the read and write commands and addresses to match the new system.
Also, many systems might have one or two GPIO instances and need to use bit masking to drive the pins
independently. The C code in this reference design accesses the I/O pins as individually memory-mapped
peripherals and reads and writes from these I/O using pointers. This makes the code simple and portable
to a wide range of microprocessors.

/* Global defines
 * Define the addresses for the I/O peripherals used to control and
 * monitor the target FPGA. Also define the location in memory the
 * bitstream is stored and its size. These are system dependent and
 * should be adjusted as needed
 */

/* Output GPIO addresses */
CCLK_GPIO_BASEADDR = 0x40020000
PROGRAM_B_GPIO_BASEADDR = 0x40030000
DATA_OUT_GPIO_BASEADDR = 0x40040000
RDRW_B_GPIO_BASEADDR = 0x40050000
CSI_B_GPIO_BASEADDR = 0x40060000

/* Input GPIO addresses */
INIT_B_GPIO_BASEADDR = 0x40070000
DONE_GPIO_BASEADDR = 0x40080000

/* Location in memory and size of the target bitstream */
MEMORY_BASEADDR = 0xC0000000
BITSTREAM_START_ADDR = MEMORY_BASEADDR + 0x2000000
BITSTREAM_SIZE_BYTES = 0xAEA68C

/* PROGRAM_B pulse width. Check the target FPGA data sheet for the
 * TPROGRAM pulse width. One microsecond is safe for any 7 series FPGA
 */
TPROGRAM = 1 /* Assumes sleep() is microseconds */

/* Serialize word and clock each bit on target's DIN and CCLK pins */
shift_word_out(data32)
{
 *cclk = CCLK_GPIO_BASEADDR
 *data_out = DATA_OUT_GPIO_BASEADDR

 /* Sequence the 32-bit word into bytes. The endianess can be either
 * little or big. The following assumes the sync word is read from
 * external memory as 0x665599AA (instead of 0xAA995566).
 */
 byte[0] = data32 >> 24
 byte[1] = data32 >> 16
 byte[2] = data32 >> 8

http://www.xilinx.com

Hardware Implementation

XAPP583 (v1.0) May 31, 2012 www.xilinx.com 11

 byte[3] = data32

 *cclk = 0

 for (i = 0; i < 4; ++i) {
 *data_out = byte[i]
 shift_cclk(1)
 }
}

/* Assert and Deassert CCLK */
shift_cclk(count)
{
 *cclk = CCLK_GPIO_BASEADDR

 *cclk = 0
 for (i = 0; i < count; --i) {
 *cclk = 1
 *cclk = 0
 }
}

int main()
{
 bits_start = BITSTREAM_START_ADDR
 bits_size = BITSTREAM_SIZE_BYTES

 *program_b = PROGRAM_B_GPIO_BASEADDR
 *rdrw_b = RDRW_B_GPIO_BASEADDR
 *csi_b = CSI_B_GPIO_BASEADDR
 *init_b = INIT_B_GPIO_BASEADDR
 *done = DONE_GPIO_BASEADDR

 /* Bring csi_b, rdwr_b Low and program_b High */
 *program_b = 1
 *rdrw_b = 0
 *csi_b = 0
 /* Configuration Reset */
 *program_b = 0
 sleep(TPROGRAM)
 *program_b = 1

 /* Wait for Device Initialization */
 while(*init_b == 0)
 ;

 /* Configuration (Bitstream) Load */
 for (i = 0; i < bits_size ; i+=4) {
 shift_word_out(bits_start + i)
 }

 /* Check INIT_B */
 if (*init_b_pointer == 0) {
 return 1
 }

 /* Check INIT_B */
 if (*init_b == 0) {
 return 1
 }

 /* Wait for DONE to assert */

http://www.xilinx.com

Hardware Implementation

XAPP583 (v1.0) May 31, 2012 www.xilinx.com 12

 while(*done == 0)
 ;

 /* Compensate for Special Startup Conditions */
 shift_cclk(8)
 return 0
}

Slave Serial Hardware

This section discusses a reference design allowing a 7 series FPGA to be configured in the
Slave Serial mode through a microprocessor. Slave Serial configuration is accomplished by
providing a 7 series FPGA with a serial clock and delivering a single data bit at every rising
edge of the clock until the final configuration bit is sent. The microprocessor reads the
configuration bitstream from external memory. Figure 8 shows the Slave Serial system layout.

Notes relevant to Figure 8:

1. Refer to Table 4, page 8 for voltage requirements.

X-Ref Target - Figure 8

Figure 8: Slave Serial Mode Configuration Example

PROGRAM_B

VCCINT

INIT_B

DONE

GND

VCCO_0

VCCO_0

4.
7

k

M1

M0

VCC0_14

33
0

DIN

CCLK

4.
7

k

CLOCK

SERIAL_OUT

PROGRAM_B

PROGRAM_B

INIT_B

DONE

VCC

GND

Configuration
Memory
Source

X583_08_032912

7 Series
FPGA

VCCO_0

VCCO_0
VCCO_0

Microprocessor
M2

VCCAUX

VCCAUXCFGBVSSee Configuration Voltage Requirements
 section for appropriate connection. (Note 1)

VCCO_14

http://www.xilinx.com

Hardware Implementation

XAPP583 (v1.0) May 31, 2012 www.xilinx.com 13

Slave Serial Pseudocode

The C code discussed in this section allows a microprocessor to:

• Read FPGA configuration data from memory

• Provide a CCLK

• Serialize the configuration bitstream

Within the slave_serial.c source file, configuration happens in the main() and the
shift_word_out() functions. To begin configuration, the PROGRAM_B pin is asserted and then
deasserted after waiting for at least the required PROGRAM_B pulse width. The code then
waits for INIT_B to be deasserted if necessary.

Note: See TPROGRAM in the target FPGA data sheet for specific requirements on the program pulse
width. Asserting PROGRAM_B is not required if the FPGA has just completed power-up or is reset
through other means besides asserting PROGRAM_B.

After PROGRAM_B and INIT_B are deasserted, shift_word_out() is called for each 32-bit word
in the target FPGA bitstream stored in memory. This function deasserts CCLK, serializes the
next bits from the current word onto the DIN pin of the target, and then asserts CCLK.

After sending the target bitstream, main() waits for the target to assert DONE. To make sure
that any special start-up conditions have been met, another eight CCLK assertions and
deassertions are sent to the target.

Note: The following pseudocode represents a memory-mapped I/O structure such as in the
MicroBlaze processor. While the slave_serial.c source file in the reference design should be easily
portable, the user might need to modify the read and write commands and addresses to match the new
system. Also, many systems might have one or two GPIO instances and need to use bit masking to drive
the pins independently. The C code in this reference design accesses the I/O pins as individually
memory-mapped peripherals and reads and writes from these I/O using pointers. This makes the code
simple and portable to a wide range of microprocessors.

/* Global defines
 * Define the addresses for the I/O peripherals used to control and
 * monitor the target FPGA. Also define the location in memory the
 * bitstream is stored and its size. These are system dependent and
 * should be adjusted as needed
 */

/* Output GPIO addresses */
CCLK_GPIO_BASEADDR = 0x40020000
PROGRAM_B_GPIO_BASEADDR = 0x40030000
SERIAL_OUT_GPIO_BASEADDR = 0x40040000

/* Input GPIO addresses */
INIT_B_GPIO_BASEADDR = 0x40050000
DONE_GPIO_BASEADDR = 0x40060000

/* Location in memory and size of the target bitstream */
MEMORY_BASEADDR = 0xC0000000
BITSTREAM_START_ADDR = MEMORY_BASEADDR + 0x2000000
BITSTREAM_SIZE_BYTES = 0xAEA68C

/* PROGRAM_B pulse width. Check the target FPGA data sheet for the
 * TPROGRAM pulse width. One microsecond is safe for any 7 series FPGA
 */
TPROGRAM = 1 /* Assumes sleep() is microseconds */
/* Serialize a 32-bit word and clock each bit on the target's DIN and
 * CCLK pins */
shift_word_out(data32)

http://www.xilinx.com

Hardware Implementation

XAPP583 (v1.0) May 31, 2012 www.xilinx.com 14

{
 *cclk = CCLK_GPIO_BASEADDR
 *serial_out = SERIAL_OUT_GPIO_BASEADDR
 *cclk = 0
 *serial_out = 0
 for (i = 31; i >= 0; --i){
 *serial_out = (data32 & 1 << i) ? 1 : 0
 shift_cclk(1)
 }
}

/* Assert and Deassert CCLK */
shift_cclk(count)
{
 *cclk = CCLK_GPIO_BASEADDR

 *cclk = 0
 for (i = 0; i < count; --i) {
 *cclk = 1
 *cclk = 0
 }
}

int main()
{
 bits_start = BITSTREAM_START_ADDR
 bits_size = BITSTREAM_SIZE_BYTES

 *program_b = PROGRAM_B_GPIO_BASEADDR
 *init_b = INIT_B_GPIO_BASEADDR
 *done = DONE_GPIO_BASEADDR

 /* Configuration Reset */
 *program_b = 0
 sleep(TPROGRAM)
 *program_b = 1

 /* Wait for Device Initialization */
 while(*init_b == 0)
 ;

 /* Configuration (Bitstream) Load */
 for (i = 0; i < bits_size; i+=4) {
 shift_word_out(bits_start + i)
 }

 /* Check INIT_B */
 if (*init_b_pointer == 0) {
 return 1
 }

 /* Wait for DONE to assert */
 while(*done == 0)
 ;

 /* Compensate for Special Startup Conditions */
 shift_cclk(8)
 return 0
}

http://www.xilinx.com

Reference Design Files

XAPP583 (v1.0) May 31, 2012 www.xilinx.com 15

Reference
Design Files

The reference design files for this application note can be downloaded from:

https://secure.xilinx.com/webreg/clickthrough.do?cid=188189

Table 5 shows the reference design checklist.

Conclusion This application note provides background on configuration as well as a description of two
complete sets of reference designs allowing a Xilinx FPGA to be configured through Slave
SelectMAP or Slave Serial mode. Although the microprocessor C code targets a Xilinx
MicroBlaze processor, it was written with portability in mind. Porting the code to another
processor requires some effort, but all the design files are documented extensively.

Table 5: Reference Design Matrix

Parameter Description

General

Developer name Matt Nielson

Target devices (stepping level, ES, production,
speed grades)

7 series FPGAs

Source code provided Yes

Source code format C

Design uses code and IP from existing Xilinx
application note and reference designs,
CORE Generator software, or third party

No

Simulation

Functional simulation performed No

Timing simulation performed No

Test bench used for functional and timing
simulations

No

Test bench format N/A

Simulator software/version used N/A

SPICE/IBIS simulations No

Implementation

Synthesis software tools/version used N/A

Implementation software tools/versions used mb-gcc (GCC) 4.1.2 20070214 (Xilinx 13.4)

Static timing analysis performed No

Hardware Verification

Hardware verified Yes

Hardware platform used for verification SP605 board, XM105 debug card, Xilinx
internal Kintex-7 FPGA testing platform

http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=188189

Revision History

XAPP583 (v1.0) May 31, 2012 www.xilinx.com 16

Revision
History

The following table shows the revision history for this document.

Notice of
Disclaimer

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of
Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available “AS
IS” and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS,
IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2)
Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of
liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the
Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or
consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably
foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to
correct any errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior
written consent. Certain products are subject to the terms and conditions of the Limited Warranties which
can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be
fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

Automotive
Applications
Disclaimer

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE
IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS
RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS
THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE
OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A
WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD
LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND
LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.

Date Version Description of Revisions

05/31/2012 1.0 Initial Xilinx release.

http://www.xilinx.com
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps

	Using a Microprocessor to Configure 7 Series FPGAs via Slave Serial or Slave SelectMAP Mode
	Summary
	System Overview
	Configuration Background
	Basic Configuration Sequence
	Configuration Bitstream Details
	Slave Serial Configuration
	Slave SelectMAP Configuration
	Data Formatting and Bit-Swapping
	Errors and Troubleshooting

	Hardware Implementation
	Microprocessor
	Voltage Compatibility
	Slave SelectMAP Hardware
	Slave SelectMAP Pseudocode
	Slave Serial Hardware
	Slave Serial Pseudocode

	Reference Design Files
	Conclusion
	Revision History
	Notice of Disclaimer
	Automotive Applications Disclaimer

